This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Electrofuels provider Infinium announced an agreement with Amazon to begin using Infinium Electrofuels in the retailer’s middle mile fleet as an ultra-low carbon alternative to traditional fossil fuels. The clean burning electrofuels will be produced for Amazon at one of the first electrofuels production facilities, located in Texas.
Toyocolor, the colorants and functional materials arm of the specialty chemicals company Toyo Ink Group of Japan, announced that the company’s Lioaccum conductive carbon nanotube (CNT) dispersions ( earlier post ) have been selected by the world’s largest battery manufacturer CATL (Contemporary Amperex Technology Co.,
The XPrize Foundation today announced the winners of its four-year, US $100 million XPrize competition in carbon removal. The contest is one of dozens hosted by the foundation in its 20-year effort to encourage technological development. It works like this: Carbon dioxide in the air dissolves into rainwater, forming carbonic acid.
Researchers at the Fraunhofer-Gesellschaft have developed a membrane technology for the energy-efficient and economic separation of hydrogen from natural gas. This technology makes it possible for the two substances to be routed through the national natural gas grid together and then isolated from one another at their final destination.
Scientists at the Department of Energy’s Oak Ridge National Laboratory have developed a coating composed of carbon nanotubes that imparts superlubricity to sliding parts. The multiwalled carbon nanotubes coat the steel, repel corrosive moisture and function as a lubricant reservoir. Kumara et al. It’s like an engine without oil.
Its hybrid electric and hydrogen powertrain aims to reduce downtime related to energy recharging while reducing the carbon footprint, including the battery. Renault Scénic Vision is zero emission in production and in use with a 75% smaller carbon footprint than a conventional battery electric vehicle.
ArcelorMittal published a concept for a low-carbon emissions steel standard to help incentivize the decarbonization of steelmaking globally and support the creation of market demand for physical steel products which would be classified as lower, and ultimately near-zero, carbon emissions steel. Dual scoring system.
Southwest Research Institute engineers have developed the next generation of clean diesel engine technology to reduce hazardous nitrogen oxides (NO x ) and carbon dioxide emissions while minimizing fuel consumption. SwRI developed the technology for the California Air Resources Board (CARB). g/hp-hr NO x emissions).
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. UBC clean hydrogen technology deployed to Alberta in a $7-million collaboration. Hydrogen plant schematic. Image: MéridaLabs.
Ltd, a subsidiary of Air Liquide Group, supplied and installed 8 hydrogen dispenser units (each with two fueling nozzles) for the Daxing hydrogen station, owned and operated by Beijing Hypower Energy Technology Ltd. Beijing HyPower Energy Technology Ltd., Air Liquide Houpu Hydrogen Equipment Co., With a capacity of 4.8
In July, SSAB Oxelösund rolled the first steel produced using HYBRIT technology—i.e., SSAB, LKAB and Vattenfall created HYBRIT, Hydrogen Breakthrough Ironmaking Technology, in 2016, with the aim of developing a technology for fossil-free iron- and steelmaking. Earlier post.).
a developer of lithium metal and lithium metal anode technologies, has successfully produced its first lithium metal at its lithium metal piloting facility in Markham, Ontario. We believe we are one of the first internationally to produce lithium metal directly from lithium carbonate at this scale. Li-Metal Corp.,
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
This reduction is achieved through a closed-loop carbon recycling system, which could replace 90% of the coke typically used in current blast furnace-basic oxygen furnace systems and produces oxygen as a byproduct. A double perovskite, Ba 2 Ca 0.66 This reacts with the iron ore in the furnace to produce CO 2. 2023.135963.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. Participating investors include Williams, Shell Ventures, Chevron Technology Ventures and the George Kaiser Family Foundation.
Rolls-Royce is developing turbogenerator technology—including a new small engine—designed for hybrid-electric aviation applications. The research and development of this technology is being part funded by the German Ministry for Economic Affairs and Climate Action. —Rob Watson, President – Rolls Royce Electrical.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7
Airbus is sterngthening its presence in the UK with the launch of a Zero Emission Development Center (ZEDC) for hydrogen technologies. This, coupled with our partnership with ATI, will allow us to leverage our respective expertise to realise the potential of hydrogen technology to support the decarbonization of the aviation industry.
Lithium chemicals derived from hard rock sources such as spodumene can be more than three times as carbon-intensive as that from brine sources, according to Benchmark Mineral Intelligence’s (Benchmark Minerals’) Lithium ESG Report. The majority of spodumene is mined in Australia where it is processed into spodumene concentrate.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. The 50 kW demonstration will prove that high-efficiency syngas production can be achieved at low capital-cost using GRC’s unique thermal-spray-based SOCC technology.
The resulting 12-sided carbon nanospheres had “bumpy” surfaces that demonstrated excellent electrical charge transfer capabilities. . … The resulting 12-sided carbon nanospheres had bumpy surfaces that demonstrated excellent electrical charge transfer capabilities. —Lu et al. C and maintained 85.9%
A Ford-led consortium is testing hydrogen fuel cell technology on the E-Transit in a small UK-based prototype fleet developed by Ford Pro. The UK-based project will establish if hydrogen fuel cell technology can help to deliver enhanced zero-emission-driving range for E-Transit customers with energy-intensive use cases.
The ceramic membrane reactor also separates carbon dioxide more efficiently, enabling the greenhouse gas to be easily transported and sequestered. The process also has a low carbon footprint. The steam reforming technology used for producing hydrogen from natural gas is well known. It also has CO 2 as a by-product.
Researchers from Tokyo Tech have developed a tin-based metal–organic framework (MOF) that can photocatalytically reduce carbon dioxide (CO 2 ) into formate under visible light. The ongoing demand for carbon-rich fuels to drive the economy keeps adding more carbon dioxide (CO 2 ) to the atmosphere.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
Fujitsuwill implement the blockchain platform based on the Fujitsu Track and Trust digital ledger technology and develop a tool for visualization and provision of tracked data. Earlier post.) Teijin will support the environmental assessment across the different processes and engagement of stakeholders toward the creation of an ecosystem.
A power generator demo unit genset, relying on a first use of FuelAdaptive engine technologies patented by ClearFlame Engine Technologies, has successfully progressed through phase one trials. All eyes now focus on the second pilot, where our engine will power a real customer with a renewable low carbon fuel.
With our solar technology, we have shown that we can produce synthetic kerosene from water and CO 2 instead of deriving it from fossil fuels. That makes the fuel carbon neutral, especially if we use CO 2 captured directly from the air as an ingredient, hopefully in the not-too-distant future. Zoller et al.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy. Resources Yu, J.,
Following the start of series production of fuel cells in December 2022, the Danish fuel cell developer and manufacturer Blue World Technologies is now launching the CellPack Stationary, a methanol fuel cell-based power generator. When powered by renewable methanol, CellPack Stationary has carbon-neutral operation.
Charge CCCV (C4V), a lithium ion battery technology company ( earlier post ), has introduced LiSER (Lithium Slim Energy Reserve), a novel cell technology platform. C4V’s LiSER technology encompasses an in-house patented battery cell design that allows OEMs to bypass modules and build the pack directly.
The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) will award up to $45 million in funding to support a new program aimed at facilitating the development of the marine carbon dioxide removal (mCDR) industry through scalable Measurement, Reporting and Validation (MRV) technologies.
Toyota has developed new electrolysis equipment to produce hydrogen from electrolyzing water using the fuel cell (FC) stack and other technology from the Mirai. The hydrogen utilization at DENSO Fukushima will be implemented as a project subsidized by the New Energy and Industrial Technology Development Organization (NEDO).
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al. Nguyen, Cafer T. 2023.101383
European regulators have decided that carbon fiber should be on a shortlist of hazardous materials and are seeking to have it banned. Among the changes was an inclusion to ban the use of carbon fiber due to the fact that microscopic shavings can be produced whenever panels are destroyed or recycled.
UK-based Expleo, a global engineering, technology and consultancy service provider, has developed a closed-loop fuel solution for global shipping that delivers a 92% reduction in greenhouse gas emissions (GHGe) in the model vessel. Bibby Wavemaster 1, the model vessel.
If we can generate syngas from carbon dioxide utilizing only solar energy, we can use this as a precursor for methanol and other chemicals and fuels. To create a process that uses only solar energy, Mi’s group overcame the difficulty of splitting carbon dioxide molecules, which are among the most stable in the universe.
The US Department of Energy (DOE) released its 2023 Critical Materials Assessment (2023 CMA), which evaluated materials for their criticality to global clean energy technology supply chains. The Assessment focuses on key materials with high risk of supply disruption that are integral to clean energy technologies.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle. —Ahmad O.
The research focuses on zero-carbon hydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry. The team’s goal is to reduce carbon emissions from the roughly 25,000 locomotives already in use in North America. billion pounds of carbon dioxide. million pounds of carbon dioxide per year.
Infinium Electrofuels technology converts carbon dioxide waste and renewable power through its proprietary process to create hydrogen-based alternatives to traditional fossil-based fuels. Electrofuels are ultra-low carbon drop-in fuels that can be used in today’s infrastructure and engines without modifications or upgrades.
The new project is the first to pair a commercial electricity generator with high-temperature steam electrolysis (HTSE) technology. This is a game-changer for both nuclear energy and carbon-free hydrogen production for numerous industries. Prairie Island. The report was published by the National Renewable Energy Laboratory.
The engine will include the integration of the Cummins Clean Fuel Technologies fuel delivery system. PACCAR, Cummins and several customers including FedEx Freight and Knight-Swift will demonstrate the ability to achieve lower carbon emissions for long-haul transport using internal combustion engine technology.
Chan School of Public Health, and consulted by dozens of experts in academia, updates ethanol’s carbon intensity score to reflect how continuous improvements in technology and practices have driven further emissions reductions in the lifecycle of ethanol and will lead to net zero renewable fuel in the future. gCO 2 e/MJ (range of 37.6
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content