This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. Zakhvatkin et al. 1c00367.
Produced water from coal-bed natural gas (CBNG) production may contain sodium bicarbonate (NaHCO 3 ) at concentrations that can harm aquatic life, according to a new study by the US Geological Survey; Montana Fish, Wildlife and Parks; the Bureau of Land Management and the US Environmental Protection Agency.
Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. Credit: ACS, Lu et al. Click to enlarge.
Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. Yissum is the technology transfer company of the University. It gives a high capacity of 730?mAh?g
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).
a clean water company that recovers phosphorus and nitrogen from industrial and municipal wastewaters to create premium fertilizers, completed a US$14.5-million Ostara Nutrient Recovery Technologies Inc., million private equity financing. a fund managed by FourWinds Capital Management.
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have developed a seawater-resilient bipolar membrane electrolyzer.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Upon discharge from a nuclear reactor, the UNF is initially stored in steel-lined concrete pools surrounded by water.
A team of researchers from Tufts University, the University of Wisconsin-Madison and Harvard University report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H 2 O+CO→ H 2 +CO 2 ) used for producing hydrogen.
Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.
Researchers from Tatung and National Cheng Kung Universities in China, and Case Western Reserve University in Ohio, report manufacturing a new oxygenate additive for diesels (bio or petroleum) using glycerol (a major byproduct of biodiesel production), dimethyl sulfate (DMS), and sodium hydroxide pellets as raw materials.
Researchers from Tianjin University and the National Engineering Research Centre for Distillation Technology, Tianjin, China, report on the use of an ionic liquid (IL) with low viscosity to enhance bitumen recovery from oil sands by solvent extraction while reducing adverse impacts in the ACS journal Energy & Fuels. However, Li et al.
Using electrolyzed water rather than harsh chemicals could be a more effective and environmentally friendly method in the pretreatment of ethanol waste products to produce an acetone-butanol-ethanol fuel mix, according to research conducted at the University of Illinois. coli on fresh fruits and vegetables.
These plants pump hot water from geothermal deposits and use it to generate electricity. The LDH sorbent is made up of layers of the materials, separated by water molecules and hydroxide ions that create space, allowing lithium chloride to enter more readily than other ions such as sodium and potassium.
By making use of a previously undesired side effect in oil recovery, researchers at Tokyo University of Agriculture and Technology (TUAT) have developed a method that yields up to 20% more heavy oil than traditional methods. To yield more oil, water may be injected into the reservoir to maintain pressure in order to keep the flow moving.
Researchers from the University of Houston have reported a significant breakthrough with a new oxygen evolution reaction catalyst that, combined with a hydrogen evolution reaction catalyst, achieved current densities capable of supporting industrial demands while requiring relatively low voltage to start seawater electrolysis.
Three MIT-led research teams have won awards from the Department of Energy’s Nuclear Energy University Programs ( NEUP ) initiative to support research and development on the next generation of nuclear technologies. Fluoride-salt High-Temperature Reactor.
Researchers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) have developed a simple way to isolate a pure magnesium salt, a feedstock for magnesium metal, from seawater. The new method flows two solutions side-by-side in a long stream. —Wang et al. Qingpu Wang, Elias Nakouzi, Elisabeth A.
A team led by researchers at Oregon State University have demonstrated that diffusion may not be necessary to transport ionic charges inside a hydrated solid-state structure of a battery electrode. The unique contiguous lattice water network inside the electrode’s lattice demonstrates the “grandeur” promised by the Grotthuss mechanism.
Uranium in nuclear fuel rods is in a chemical form that is “pretty insoluble” in water, said Professor Alexandra Navrotsky, UC Davis, corresponding author on the paper, unless the uranium is oxidized to uranium-VI—a process that can be facilitated when radiation converts water into peroxide, a powerful oxidizing agent.
A team of researchers from universities and national laboratories led by Tufts University has developed catalysts composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials. The result could be lower costs. —Yang et al.
The surfactant chemicals found in samples of fracking fluid collected in five states were no more toxic than substances commonly found in homes, according to a first-of-its-kind analysis by researchers at the University of Colorado Boulder. —Thurman et al. The authors caution that their results may not be applicable to all wells.
The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Columbia University. Harvard University.
This research is a collaborative project between CSIRO, NSW Department of Primary Industries, University of Adelaide, the Australian Centre for Plant Functional Genomics and the ARC Centre of Excellence in Plant Energy Biology. The salt-tolerant gene (known as TmHKT1;5-A) works by excluding sodium from the leaves. Matthew Gilliham.
Two chemists at Brown University have streamlined the conversion of waste vegetable oil (WVO) into biodiesel, eliminating the need for corrosive chemicals to perform the reactions. Also, the conversion requires the toxic chemicals sulfuric acid and either potassium hydroxide or sodium hydroxide. That makes the process less efficient.
The biorefinery will convert the process waste effluent from the plant into cellulosic ethanol, sodium acetate and clean, warm water. Michigan Technical University will contribute research to improve fermentation processes and also on the use of sodium acetate for novel de-icing applications.
Researchers at Wuhan University in China have developed a new electrochemical cell, PANI/Li x Mn 2 O 4 , for selective recovery of Li + ions from brine water with high impurity cations (K + , Na + , Mg 2+ , etc). free technology for Li + extraction from brine waters. 1 LiCl and a strong cycle ability with 70.8% Zhao et al.
Researchers led by a team from Griffith University in Australia have developed a multifunctional polymer binder that not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium-ion diffusion coefficient in a LiFePO 4 (LFP) electrode during the operation of the batteries.
A team of researchers from Northwestern University, UCLA and the University of St. CD with salt substitute (KCl) or potassium benzoate (food additive E212) in bottled water and Everclear grain spirit (EtOH) yields porous frameworks which constitute edible MOFs. A rendering of an element of a CD-MOF. Click to enlarge.
But a new study led by Sujay Kaushal of the University of Maryland warns that introducing salt into the environment—whether it's for de-icing roads, fertilizing farmland or other purposes—releases toxic chemical cocktails that create a serious and growing global threat to our freshwater supply and human health.
To maximize the benefit of the open structure, the researchers needed to use ions that fit; hydrated potassium ions proved to be a much better fit compared with other hydrated ions such as sodium and lithium. The researchers chose to use a water-based electrolyte. It fits perfectly— really, really nicely. —Yi Cui.
Water (1 project). Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, low cost planar liquid sodium beta batteries for grid scale electrical power storage applications. Arizona State University, in partnership with Fluidic Energy Inc., ENERGY STORAGE.
Scientists have demonstrated that modifying the topmost layer of atoms on the surface of electrodes can have a remarkable impact on the activity of solar water splitting. This photocurrent drives the chemical reactions that split water into oxygen and hydrogen. —Mingzhao Liu. —Kyoung-Shin Choi.
Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. When demand is high, the water is released through turbines that generate electricity. Credit: Barnhart and Benson, 2013. Click to enlarge.
Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. times above that of sodium-ion batteries with graphite electrodes.
A team at the University of Maryland has demonstrated that a material consisting of a thin tin (Sn) film deposited on a hierarchical conductive wood fiber substrate is an effective anode for a sodium-ion (Na-ion) battery, and addresses some of the limitations of other Na-ion anodes such as capacity fade due to pulverization.
Now, however, researchers from the Ocean University of China (Qingdao) and Yunnan Normal University (Kunming, China) have developed an all-weather solar cell that is triggered by both sunlight and raindrops by combining an electron-enriched graphene electrode with a dye-sensitized solar cell.
The companys plan is to electrochemically strip carbon dioxide out of the ocean, store or use the CO 2 , and then return the water to the sea, where it will naturally absorb more CO 2 from the air. Thats a huge amount of water. The softened water passes through the electrodialysis unit, which applies a voltage.
Los Angeles Department of Water and Power. In partnership with a consortium of local research institutions, this project deploy smart grid systems at partners’ university campus properties and technology transfer laboratories. Demonstration of Sodium Ion Battery for Grid Level Applications. 10,792,045. 44 Tech Inc. (PA).
Researchers at Northwestern University , Evanston, Ill., and the University of Sussex , Brighton, England, have created prototypes of new environmentally sustainable devices that can monitor blood pressure and heartbeat, or heal persistent afflictions such as diabetic ulcers.
Researchers at Tohoku University in Japan have developed a new system combining hydrodynamic cavitation with sodium percarbonate (SP) (an environmentally benign oxidation reagent) for the efficient pre-treatment of biomass. These bubbles subsequently collapse when the pressure increases downstream of the constriction.
Researchers at North Carolina State University are developing an ozone-based pre-treatment technique (ozonolysis) to release sugars from the energy grass miscanthus for production into renewable fuels or chemicals with minimal generation of chemical waste streams and degradation of the carbohydrate components.
The program will encourage systems that couple large-scale physical and genetic characterization with advanced algorithms in order to accelerate the year-over-year yield gains of traditional plant breeding and the discovery of crop traits that improve water productivity, nutrient use and our ability to mitigate greenhouse gases. TERRA Awards.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content