Ariel researchers develop new type of hydrogen generator with sodium borohydride for on-demand use

Green Car Congress

Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst.

Sodium 379

ion Ventures and LiNa Energy conclude successful test of solid-state sodium-nickel battery platform

Green Car Congress

Using this skill set, they developed the LiNa Platform, an innovative re-engineering of the operationally proven sodium-nickel-chloride (Na-NiCl 2 ) chemistry, where power is produced by sodium ions conducting across a fast sodium ion conducting ceramic membrane in the solid-state.

Sodium 392
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

WSU, PNNL researchers develop viable sodium battery

Green Car Congress

Sodium-ion batteries (SIBs), with the intrinsic advantages of resource abundance and geographic uniformity, are desired alternative battery technology to Li-ion batteries (LIBs) for grid-scale energy storage and transportation applications.

Sodium 245

Graphene Jolts Sodium-Ion Batteries’ Capacity

Cars That Think

After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. It opens up a path to making low-cost, compact sodium batteries practical.

Sodium 100

Researchers use sodium to deliver low-cost MgSi alloys for solid-state hydrogen storage

Green Car Congress

Researchers at the University of Queensland have show that a low-cost Mg-based hydrogen storage alloy is possible with only 1 wt% Si. wt% hydrogen is achieved via trace sodium (Na) addition. A high hydrogen capacity of 6.72 A paper on their work is published in the Journal of Power Sources. Mg 2 Si is a promising catalyst for Mg-based hydrogen storage materials due to its low cost, light weight, and non-toxic properties.

Sodium 176

Faradion and Phillips 66 to develop lower cost and higher-performing sodium-ion battery materials

Green Car Congress

UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries.

Sodium 237

Solid-state sodium battery company LiNa Energy closes £3.5M funding round

Green Car Congress

Solid-state sodium battery company LiNa Energy ( earlier post ) has closed out a £3.5-million (US$4.8-million) late seed funding round, attracting a combination of existing and new investors. LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodium battery.

Sodium 168

Tesla China supplier CATL launches cost-effective sodium-ion battery cell

Teslarati

CATL) unveiled its sodium-ion battery earlier today, along with a solution that could integrate the cells with lithium-ion batteries in a single pack. The introduction of sodium-ion cells is an alternative option to the lithium-ion cells Tesla has used in its vehicles.

Sodium 114

New organic cathode for high performance solid-state sodium-ion battery

Green Car Congress

Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers at the University of Houston have now developed an organic cathode that improves both stability and energy density. Credit: University of Houston.

2019 227

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Oxford University was also a partner. Sodium-ion intercalation batteries—i.e., However, developing efficient Na + intercalation compounds is a challenge because sodium ions are much larger than lithium ions—about 70% larger in radius.

2015 194

New high-power, high-capacity, long-life sodium battery

Green Car Congress

A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodium battery with 96% capacity retention after 2,000 cycles. The researchers combined sodium vanadium triphosphate (Na 3 V 2 (PO 4 ) 3 ) with a mixture of reduced graphene oxide and carbon nanotubes to improve the sodium compound’s conductivity.

2016 163

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery. Sodium-ion intercalation batteries—i.e., However, sodium-ion batteries face issues related to performance, weight and instability of materials.

2015 209

Empa, UNIGE team develop prototype solid-state sodium battery; focus on improving the solid-solid interface

Green Car Congress

Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. With a NaCrO 2 cathode, closo-borate solid electrolyte and metallic sodium anode, the cell demonstrated reversible and stable cycling with a capacity of 85 mAh g -1 at C/20 and 80 mAh g -1 at C/5 with more than 90% capacity retention after 20 cycles at C/20 and 85% after 250 cycles at C/5.

2017 174

Expanded graphite as a superior anode for sodium-ion batteries

Green Car Congress

Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium. To address that problem, the University of Maryland team developed a way to expand the graphite material—i.e.,

Sodium 183

New hierarchical metal-organic nanocomposite cathode for high-energy sodium-ion batteries

Green Car Congress

Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). Recently, room temperature sodium-ion batteries (SIBs) have received tremendous attention for electrochemical energy storage applications owing to their low cost and the abundant resource of sodium compared with lithium.

2017 173

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. As reported in a paper in Nature Energy , the Stanford team achieved four-sodium storage in a Na 2 C 6 O 6 electrode with a reversible capacity of 484 mAh g −1 , an energy density of 726 Wh kg −1 cathode , an energy efficiency above 87% and a good cycle retention.

2017 174

PNNL team develops sodium-manganese oxide electrodes for sodium-ion rechargeable batteries

Green Car Congress

A team of scientists at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL) and visiting researchers from Wuhan University in Wuhan, China have developed single crystalline sodium-manganese oxide (Na 4 Mn 9 O 18 ) nanowires that show a high, reversible sodium ion insertion/extraction capacity, excellent cycling ability, and promising rate capability for sodium-ion battery applications. Sodium.

Sodium 189

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

Researchers at Vanderbilt University have demonstrated that ultrafine sizes (∼4.5 nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. In the paper, they reported reversible capacities of more than 500 and 600 mAh/g for sodium and lithium storage for ultrafine nanoparticles, along with improved cycling and rate capability.

2015 193

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. The researchers from the Waterloo Institute for Nanotechnology, led by Professor Linda Nazar who holds the Canada Research Chair in Solid State Energy Materials, have described a key mediation pathway that explains why sodium-oxygen batteries are more energy efficient when compared with their lithium-oxygen counterparts.

2015 197

U Alberta team develops hybrid sodium-ion capacitor; intermediate in energy & power between ultracaps and batteries

Green Car Congress

A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year.

2014 228

Researchers significantly improve H2 storage properties of sodium aluminium hydride by doping with 2D titanium carbide

Green Car Congress

A team at Zhejiang University in China has significantly enhanced the hydrogen storage properties of sodium aluminum hydride (NaAlH 4 ) by doping it with a 2D titanium carbide (Ti 3 C2) MXene. MXenes” are exfoliated 2D carbide and carbonitride nanosheets that are structurally similar to graphene, where M represents transition metals, and X is either C or/and N, earlier post ).

2016 163

Iowa State/Ames Lab researcher receives $3M from ARPA-E for solid-state sodium battery

Green Car Congress

The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. And, nearly all countries have access to large amounts of sodium. A team led by Yan Yao at the University of Houston will create a new cathode for the battery.

2015 150

Yissum offering novel high-performance anode for sodium-ion batteries; antimony sulphide nanoparticle-coated graphene

Green Car Congress

Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. Yissum , the Research and Development Company of the Hebrew University of Jerusalem, is offering a novel anode for sodium-ion batteries (Na-ion, NIB) which enables the production of a battery with high capacity, excellent rate capability and good cycle performance.

2014 176

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. The second presentation described the use of a solid electrolyte in a sodium-ion battery cell. PATHION technology executive Andy Murchison led these development efforts with the support of Helena Braga and Jorge Ferreira of the University of Porto, who were operating under a work-for-hire agreement with PATHION.

2015 189

Univ. of Maryland team develops promising sodium-ion cathode material: FePO4/nanotube composite

Green Car Congress

Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). For instance, compared to lithium, sodium weighs more and has a higher ionization potential and a larger ionic radius. SWNT composite is a promising cathode material for viable sodium-ion batteries.

Researchers improve the performance of sodium-ion batteries by using tailored carbon anodes with hierarchical porosity

Green Car Congress

Researchers at Justus Liebig University, Giessen, Germany, have improved the performance of sodium-ion batteries ( earlier post ) by using tailor-made carbon materials with hierarchical porosity for the anode instead of common carbon-based anode materials. A battery that uses sodium ions instead of lithium ions could potentially be much less expensive and safer, and it would be more environmentally benign.

2011 168

SiGNa Chemistry Demonstrates Sodium Silicate-Based Hydrogen Generation System for Portable Fuel Cells

Green Car Congress

Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. At greater than 9% hydrogen by weight, sodium silicide technology produces comparable results to chemical hydride technologies such as ammonia borane or sodium borohydride.

2009 197

Researchers find tin nanoparticles promising electrode material for sodium-ion batteries

Green Car Congress

Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. reversible and rapid ion insertion and extraction, but using sodium ions rather than lithium. Mao, and Jian Yu Huang (2012) Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction.

2012 183

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9

Sodium 388

Study finds high sodium bicarbonate concentrations in water from coal-bed natural gas production harms aquatic life; water treatment can mitigate effects

Green Car Congress

Produced water from coal-bed natural gas (CBNG) production may contain sodium bicarbonate (NaHCO 3 ) at concentrations that can harm aquatic life, according to a new study by the US Geological Survey; Montana Fish, Wildlife and Parks; the Bureau of Land Management and the US Environmental Protection Agency. Salts such as sodium bicarbonate are found naturally in the water along the coal-bed natural gas seams.

2012 189

Xcel Terms First Phase of Sodium-Sulfur Battery Wind Energy Storage Test Project Successful

Green Car Congress

In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. The sodium-sulfur battery is commercially available and versions of this technology are in use elsewhere in the US and other parts of the world, but this is the first US application of the battery as a direct wind energy storage device.

2010 183

Blackstone may begin commercializing 3D-printed Na-ion batteries as early as 2025; testing in electric bus

Green Car Congress

Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. Furthermore, the upscaling of sodium-based solid-state electrolytes on a ton scale is being developed in order to be able to produce them in the Blackstone Group from 2025.

UNSW team demonstrates high reversible hydrogen storage capacity under mild conditions for sodium borohydride using novel core-shell nanostructure; potential for vehicles

Green Car Congress

A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. mass %), sodium borohydride is a promising hydrogen storage material. The core-shell NaBH 4 @Ni nanoparticles show high reversible hydrogen storage under reasonable conditions.

2012 213

Process for Hydrogen Production from Sodium Sulfite Solutions Resulting from Capture of SO2 from Coal Flue Gas

Green Car Congress

Researchers at the University of Central Florida have developed a novel ultraviolet (UV) photolytic process for the production of hydrogen from aqueous Na 2 SO 3 (sodium sulfite) solutions created by the absorption of SO 2 using an aqueous sodium hydroxide solution as a mechanism to treat SO 2 emissions from sources such as coal-fired power plants and refineries.

2010 168

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. A = lithium or sodium (Li or Na), M represents a metal and 1 ≤ n < z. Also, sodium rather than lithium might be used as the anode.

2011 189

Isfahan University of Tech team reports new efficient pretreatment method for rice straw to boost yield of cellulosic ethanol

Green Car Congress

Researchers at Isfahan University of Technology (Iran) report the efficient production of cellulosic ethanol from rice straw using a new sodium carbonate pretreatment method. Rice straw was treated with sodium carbonate (Na 2 CO 3 )prior to enzymatic hydrolysis and fermentation. and 1 M sodium carbonate solution.

2012 194

Researchers use multivalent cation additives to inhibit dendrite growth in rechargeable batteries

Green Car Congress

Researchers at Tohoku University have devised a means to stabilize lithium or sodium depositions in rechargeable batteries, helping keep their metallic structure intact. Repeated deposition and dissolution of metal deforms the structures of lithium and sodium.

Volkswagen and BASF present the first “Science Award Electrochemistry” to Dr. Naoaki Yabuuchi, Tokyo University of Science; Li-ion and Na-ion battery research

Green Car Congress

The first international “Science Award Electrochemistry” from BASF and Volkswagen ( earlier post ) goes to Dr. Naoaki Yabuuchi, Tokyo University of Science, Institute for Science and Technology, Tokyo, Japan. Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries.

2012 198

Report: Sumitomo and Kyoto University developing lower temperature molten-salt battery; about 10% the cost of Li-ion

Green Car Congress

in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. The new battery uses sodium-containing substances melted at a high temperature. Sumitomo Electric worked with researchers at Kyoto University to develop a sodium material that melts at 57 C. The company and the university have applied for patents.

New high-performance anode material for Na-ion batteries

Green Car Congress

A team from the University of Technology, Sydney (Australia) and Gyeongsang National University (S. Korea) have developed SnO2 @graphene nanocomposites for use as anodes in sodium-ion (Na-ion) batteries. The nanocomposite exhibited a high reversible sodium storage capacity of above 700 mAh g -1 and excellent cyclability, which the researchers ascribed to the 3D architecture of the SnO 2 @graphene nanocomposite.

2013 212

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Now, researchers from Chung-Ang University, Korea; UC Berkeley; and Argonne National Laboratory have used first principles calculations to demonstrate that layered calcium transition metal (TM) oxide materials (CaTM 2 O 4 ) with a range of TM substitutions (TM = Ti, V, Cr, Mn, Fe, Co, and Ni) have excellent battery-related properties including thermodynamic stability, average voltage, energy density, synthesizability, ionic mobility, and electronic structure.

Sodium 248

Faraday Institution to award up to £55M to five consortia for energy storage research

Green Car Congress

The University of Oxford will lead a consortium of five other university and six industry partners to address the way electrodes for Li-ion batteries are manufactured. The project’s Principal Investigator is Professor Patrick Grant of the University of Oxford. Other university partners are University of Birmingham, University College London, University of Sheffield, University of Southampton and University of Warwick.

2019 193

New Na-ion battery combining intercalation and conversion could be promising low-cost energy storage system

Green Car Congress

Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. A team led by Yang-Kook Sun at Hanyang University (South Korea), Bruno Scrosati at University of Rome Sapienza, and Khalil Amine at Argonne National Laboratory reports the development of a sodium-ion battery based on a carbon-coated Fe 3 O 4 anode, Na[Ni 0.25 4Li 2 O + 3Fe); it undergoes a similar conversion reaction when used in a sodium cell.

2014 197