article thumbnail

New smelting reduction process to recover Co, Ni, Mn, and Li simultaneously from Li-ion batteries

Green Car Congress

A team from metals research institute SWERIM in Sweden reports on a smelting reduction process to recover cobalt, nickel, manganese and lithium simultaneously from spent Li-ion batteries. The absence of a slag allows a nearly 100% recovery of Co, Ni, and Mn in the formed alloy and a nearly 100% recovery of lithium in the flue dust.

Ni-Li 321
article thumbnail

Fluorine-incorporated interface enhances cycling stability of Li metal batteries with Ni-rich NCM cathodes

Green Car Congress

Li metal anodes and Ni-rich layered oxide cathodes with high reversible capacities are promising candidates for the fabrication of high energy density batteries. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. Yongwon Lee et al. 2019.104309.

Ni-Li 357
article thumbnail

Researchers in Korea propose graphene/Ni foam as Li metal storage medium for advanced batteries

Green Car Congress

Researchers in Korea have developed three-dimensional monolithic corrugated graphene on nickel foam electrode as a Li metal storage framework in carbonate electrolytes. Therefore, hybrid engineering to prevent dendritic Li growth and increase the coulombic efficiency in highly reactive electrolytes is essential. —Kang et al.

Ni-Li 375
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization. Huang, M.,

Ni-Li 284
article thumbnail

Nanjing researchers design new Li-rich layered cathode

Green Car Congress

Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.

Ni-Li 365
article thumbnail

Proterial developed a technology that reduces CO2 emissions during Li-ion cathode material production by more than 20%

Green Car Congress

formerly Hitachi Metals, earlier post ) has developed a technology to manufacture cathode materials for lithium-ion batteries (LIBs) without the previously required process of converting nickel to nickel hydroxide(Ni(OH) 2 ) to produce a precursor that is used as the starting material for the manufacture of cathode materials. Proterial, Ltd.,

Li-ion 195
article thumbnail

Direct electro-oxidation method for lithium leaching from spent ternary Li-ion batteries

Green Car Congress

Researchers from Nanchang Hangkong University in China have developed a direct electro-oxidation method for lithium leaching from spent ternary lithium-ion batteries (T-LIBs) (Li 0.8 In a paper in the ACS journal Environmental Science & Technology they report that 95.02% of Li in the spent T-LIBs was leached under 2.5

Li-ion 195