article thumbnail

KAUST team devises electrically-driven membrane process for seawater lithium mining

Green Car Congress

Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).

Li-ion 476
article thumbnail

New liquid alloy electrode significantly lowers operating temperature of sodium-beta batteries; improved performance

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.

Sodium 218
article thumbnail

Army Research Lab discovers aluminum nanomaterial rapidly splits water on contact

Green Car Congress

Researchers at the US Army Research Laboratory (ARL) have discovered that a nano-galvanic aluminum-based powder of their design splits water on contact, producing hydrogen and oxygen. However, these methods take time, elevated temperature, and added electricity. That’s a lot of power to run any electrical equipment.

Water 207
article thumbnail

IBC demonstrates highly selective high-yield direct lithium extraction from Salar de Maricunga brine

Green Car Congress

The Pilot Plant has undergone validation testing and begun Phase One operation, the results from which demonstrate highly selective, high-yield direct lithium extraction from brine and high water efficiency. SuperLig 285 is highly selective for Li over other brine constituents including magnesium, calcium, sodium, potassium and boron.

Li-ion 243
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

First Cobalt announces positive feasibility results for Canadian cobalt refinery expansion; first NA producer of battery-grade cobalt sulfate

Green Car Congress

The study contemplates expanding the existing facility and adapting it to be North America’s first producer of cobalt sulfate, an essential component in the manufacturing of batteries for electric vehicles. The outlook for electric vehicles and the push by automakers to develop shorter supply chains creates an excellent opportunity.

Sodium 221
article thumbnail

Ceramatec licensing molten sodium technology for heavy oil upgrading; removing the need for diluent for bitumen

Green Car Congress

Flowchart of Molten Sodium Upgrading process. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the Molten Sodium Upgrading (MSU) technology. When electricity is applied to the ceramic membrane, elemental sodium is extracted through the membrane and recycled to the process.

Sodium 199