Remove Carbon Remove Sodium Remove Study Remove Water
article thumbnail

Researchers devise seawater-resilient bipolar membrane electrolyzer for turning seawater into hydrogen

Green Car Congress

The results of their study, published in Joule , could help advance efforts to produce low-carbon fuels. Generation of H 2 and O 2 from untreated water sources represents a promising alternative to ultrapure water required in contemporary proton exchange membrane-based electrolysis.

Hydrogen 418
article thumbnail

Nouryon, Tata Steel, Port of Amsterdam to study feasibility of largest green H2 cluster in Europe; 100 MW water electrolysis facility

Green Car Congress

Nouryon (formerly AkzoNobel Specialty Chemicals), Tata Steel and the Port of Amsterdam have joined together to study the feasibility of a large green hydrogen cluster in the Amsterdam region. The three parties consider green hydrogen as vital for reaching climate targets and building a more circular economy—e.g.,

Water 170
article thumbnail

First Cobalt announces positive feasibility results for Canadian cobalt refinery expansion; first NA producer of battery-grade cobalt sulfate

Green Car Congress

announced positive results from an independent feasibility study conducted on its permitted cobalt refinery in Ontario, Canada. The study contemplates expanding the existing facility and adapting it to be North America’s first producer of cobalt sulfate, an essential component in the manufacturing of batteries for electric vehicles.

Sodium 221
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

TUAT team develops more efficient method to recover heavy oil using novel chemical flooding

Green Car Congress

To yield more oil, water may be injected into the reservoir to maintain pressure in order to keep the flow moving. Engineers may also make the water more alkaline by adding sodium hydroxide or sodium carbonate to help the oil flow better. —Yuichiro Nagatsu.

Oil 243
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.

Recharge 285
article thumbnail

Caltech engineers devise new thermochemical cycle for water splitting for H2; recyclable, non-toxic, non-corrosive and at lower temperatures

Green Car Congress

The thermochemical production of hydrogen and oxygen from water via a series of chemical reactions is of interest because it directly converts thermal energy into stored chemical energy (hydrogen and oxygen), and thus can take advantage of excess heat given off by other processes. —Xu et al.

Water 210