This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes. Universal Hydrogen modular capsule.
Universal Hydrogen Co. ACIA expects to place 10 firm orders for Universal Hydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. The conversion work for US-based airlines, flight test, as well as continuing airworthiness support would be based in AeroTEC’s Moses Lake facility.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. In the future, the fuel-cell-suitable crude methanol as well as the cleaned methanol will be sold industrially as e-fuel.
Now, a team from the University at Buffalo, Southern Illinois University, University of South Carolina and Brookhaven National Laboratory reports a highly active and stable Ru-free catalyst from earth-abundant elements for efficient carbon-free hydrogen generation via ammonia decomposition. Tabassum et al. Kyriakidou, Q.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. Even with an improved solar-to-hydrogen efficiency rate of around 5%, the conversion rate is still too low to be commercially viable.
Researchers at the University of Delaware have developed an inexpensive bismuth?carbon As such, development of Bi-based cathodes for conversion of CO 2 to CO would represent an important development for the fields of CO 2 electrocatalysis and renewable energy conversion. CO can then be reacted with H 2 O via the water?gas
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. This battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. (In Credit: ACS, Oh et al. Click to enlarge.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Since internal combustion engines will remain the primary mode of choice for mobility in the foreseeable future, both alternative (renewable) fuels and high-performance combustion concepts/ engines using fuels adapted for that purpose will be preferred for reducing the combustion impact on climate change. —Kalghatgi et al.
NEC Corporation, NEC TOKIN Corporation and TOHOKU UNIVERSITY have jointly created a thermoelectric (TE) device using the spin Seebeck effect (SSE) with conversion efficiency 10 times higher than a test module that was produced based on a multi-layered SSE technology published by the Tohoku University group in 2015.
The US Department of Energy (DOE) has selected nine universities for awards for research projects that will continue to support innovation and development of advanced, lower emission coal technologies. million investment will be leveraged with additional funds from the universities to support $3.1 Brown University.
Researchers from the Korea Research Institute of Chemical Technology (KRICT) and Sungkyunkwan University have developed a hybrid conversion process for the production of biobutanol based on the selective catalytic hydrogenation of butyric acid (C 4 H 8 O 2 ) resulting from the fermentation of glucose.
The miscanthus biomass was harvested and baled at the INA demonstration site in Croatia in February this year and shipped for processing to Clariant’s pre-commercial sunliquid plant in Straubing, Germany for conversion into lignocellulosic sugars and ethanol.
Ten of these projects are new while the rest received renewed funding based both on their achievements to date and the quality of their proposals for future research. Light-Material Interactions in Energy Conversion (LMI). University of California, Berkeley. University of California, Riverside. Northwestern University.
Supported by the German Federal Ministry of Economics and Technology (BMWi), and due to run for three years from December 2020, project partners include the University of Munich, Neptun Ship Design, WTZ and Woodward L’Orange. —Christian Kunkel, Head of Combustion Development, Four-Stroke R&D, MAN Energy Solutions.
A competing reaction, called the hydrogen evolution reaction (HER) or “water splitting,” takes precedence over the CO 2 conversion reaction. —Haotian Wang, a Rowland Fellow at Harvard University and the corresponding author. This study was supported in part by the Rowland Institute at Harvard University. Resources.
However, some compounds like FeF 3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction. Iron fluoride, an intercalation-conversion cathode for lithium-ion batteries, promises a high theoretical energy density of 1922?Wh?kg
The US Department of Energy’s (DOE) Office of Fossil Energy will award $9 million over five years to organizations to assist it in building domestic and international consensus on future fossil energy technologies ( DE-FOA-0001111 ). turbines, fuel cells, hybrids, novel power generation cycles); coal conversion (e.g.,
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
The team, from Belgium, France and the US, led by researchers from VIB and Ghent University, concluded that CCR down-regulation may become a successful strategy to improve biomass processing if the yield penalty can be overcome. The branches with the highest red coloration give us hope that we will be able to achieve our goal in the future.
Every year, Netherland-based student company TU/ecomotive produces an electric car with a team of 21 BA students from the Eindhoven University of Technology, with the aim of showing the world that a hypothetical, sustainable car of the future can be a reality today. —Christopher O’Brien de Ponte, account manager at TU/ecomotive.
PNNL’s thermochemical conversion device is installed in front of a concentrating solar power dish. The system converts natural gas into syngas—with higher energy content than natural gas—using a thermochemical conversion device installed in front of a concentrating solar power dish. Photo: PNNL. Click to enlarge.
Researchers at Ruhr-Universität Bochum (RUB) and Max-Planck-Institut für Eisenforschung in Düsseldorf report on a new class of electrocatalysts that is theoretically suitable for universal use. Thus, it would contribute to solving one of the major problems of many energy conversion reactions, namely otherwise unavoidable great energy losses.
Business-as-usual’ projections of futureconversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. —Miettinen et al. Chris Malins.
Researchers from the University of Liverpool (UK), with colleagues from Dalian University of Technology (China) and the University of Hull (UK), have developed a new process for the direct, one-step activation of carbon dioxide and methane (dry reforming of methane) into higher value liquid fuels and chemicals (e.g.,
—James Turner, Professor of Mechanical Engineering, Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST). Bourns College of Engineering – Center for Environmental Research and Technology, University of California, Riverside, Riverside, CA. Indian Institute of Science, Bangalore, India.
Energy Research Center at RWTH Aachen University, E.ON The project will be coordinated by RWTH Aachen University. is responsible for planning and construction of the battery storage facility and for developing and testing marketing strategies for future products for the energy market. The M5BAT project is backed by a €6.5-million
A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China. —Susumu Kitagawa, materials chemist at Kyoto University.
announced that the Ohio State University (OSU) team was the overall winner of the EcoCAR 2: Plugging In to the Future finals. Over the course of three years, The Ohio State University consistently met incremental goals that strengthened their position against the other university teams, the organizers said.
Image: Shih-Hsien Liu/ORNL and Shishir Chundawat/Rutgers University–New Brunswick. Lignin, which binds to and fortifies plant fibers, could be used to help upgrade valuable aromatic chemicals in the future, according to Chundawat. The ammonia-salt based solvent system quickens the conversion of cellulose into sugars using enzymes.
The projects conducted through this program are geared toward reducing the cost of coal conversion and mitigating the environmental impacts of fossil-fueled power generation. Montana State University. Technologies developed in this project will set the stage for further validation in future field testing. Lead organization.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Researchers from Monash University and Hokkaido University have developed a method to produce dimethoxymethane (DMM)—a diesel blend fuel currently of great research interest—via CO 2 hydrogenation in methanol over a novel ruthenium-based catalyst. Their paper is published in the Journal of Energy Chemistry.
A team led by Professor Jae Sung Lee at Ulsan National Institute of Science and Technology (UNIST), with colleagues at Pohang University of Science and Technology (POSTECH), have developed a new pathway for the direct conversion of CO 2 to liquid transportation fuels by reaction with renewable hydrogen produced by solar water splitting.
The consortium brings together a total of ten partners: EDF Deutschland, Holcim Deutschland, OGE, Ørsted Deutschland, Raffinerie Heide, Heide’s municipal utility, Thüga, and thyssenkrupp Industrial Solutions, along with the Region Heide development agency and the Westküste University of Applied Sciences.
Researchers at the University of Bristol (UK) have developed a new family of catalysts that enables the conversion of ethanol into n-butanol—a higher alcohol with better characteristics for transportation applications than ethanol—with selectivity of more than 95% at good conversion. —Professor Duncan Wass.
The projects selected are located in 25 states, with 50% of projects led by universities, 23% by small businesses, 12% by large businesses, 13% by national labs, and 2% by non-profits. University of Massachusetts, Amherst. Development of a Dedicated, High-Value Biofuels Crop The University of Massachusetts, Amherst will develop an.
By working in close collaboration with highly competent partners, we intend to play an important role in facilitating a cleaner and more profitable future for the marine sector. The proposed engine power generation innovation is built around achieving ultra-high energy conversion efficiency.
Scientists at the US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) have developed an enzyme that can enable the conversion of biomass to sugars up to 14 times faster and more cheaply than competing catalysts in enzyme cocktails today. CelA converted to double that extent. —Berlin (2013).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content