Remove Conversion Remove Design Remove Low Cost Remove Water
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies. —Mao et al. Haiyan Mao et al.

Low Cost 243
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

The other projects include efforts to bring a microreactor design closer to deployment, tackle nuclear regulatory hurdles, improve operations of existing reactors, and facilitate new advanced reactor developments. The US Department of Energy (DOE) awarded $22.1 This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).

Hydrogen 475
article thumbnail

EPFL team develops low-cost catalyst for splitting CO2

Green Car Congress

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.

Low Cost 150
article thumbnail

Researchers develop free-standing nanowire mesh for direct solar water-splitting to produce H2; new design for “artificial leaf”

Green Car Congress

The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. an “artificial leaf” to produce hydrogen—based on a nanowire mesh that lends itself to large-scale, low-cost production. Credit: ACS, Liu et al.

Water 270
article thumbnail

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

Green Car Congress

As the V OC of the presented c-Si cells is only ∼600 mV, four cells need to be connected in series to achieve stable water splitting performance. We demonstrate in this study that, thanks to their high V OC , three series-connected SHJ cells can already stably drive the water splitting reaction at unprecedented SHE. Schüttauf et al.

Solar 150
article thumbnail

US/China team develops robust, stable Ni/Fe OER catalyst for water-splitting at low overpotentials

Green Car Congress

A team from the University of Houston and Hunan Normal University in China has developed an active and durable oxygen evolution reaction (OER) catalyst for water splitting that meets commercial crtieria for current densities at low overpotentials. to deliver 200 mA cm -2 , unsatisfactory for the commercial requirements of 1.8-2.4

Water 170
article thumbnail

DOE awarding $35M to 11 projects for hydrokinetic turbine development; ARPA-E SHARKS

Green Car Congress

SHARKS teams will develop new economically competitive Hydrokinetic Turbines (HKT) designs for tidal and riverine currents. Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources.

Mariner 418