article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4.

Water 459
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure).

Low Cost 315
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

The low cost of porous melamine means that the material could be deployed widely. In contrast, the melamine porous network with DETA and cyanuric acid modification captures CO 2 at about 40 degrees Celsius, slightly above room temperature, and releases it at 80 degrees Celsius, below the boiling point of water.

Low Cost 243
article thumbnail

EPFL team develops low-cost catalyst for splitting CO2

Green Car Congress

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.

Low Cost 150
article thumbnail

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

Green Car Congress

As the V OC of the presented c-Si cells is only ∼600 mV, four cells need to be connected in series to achieve stable water splitting performance. We demonstrate in this study that, thanks to their high V OC , three series-connected SHJ cells can already stably drive the water splitting reaction at unprecedented SHE. Schüttauf et al.

Solar 150
article thumbnail

MIT Researchers Identify New Low-Cost Water-Splitting Catalyst

Green Car Congress

Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. Earlier post.). Materials for the new catalyst are even more abundant and inexpensive than those required for the first.

Low Cost 225
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.

Hydrogen 475