Remove Conversion Remove Cost Remove Cost Of Remove Low Cost
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,

Low Cost 315
article thumbnail

Researchers use melamine to create effective, low-cost carbon capture; potential tailpipe application

Green Car Congress

The new material is simple to make, requiring primarily off-the-shelf melamine powder—which today costs about $40 per ton—along with formaldehyde and cyanuric acid, a chemical that, among other uses, is added with chlorine to swimming pools. The low cost of porous melamine means that the material could be deployed widely.

Low Cost 243
article thumbnail

EPFL team develops low-cost catalyst for splitting CO2

Green Car Congress

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.

Low Cost 150
article thumbnail

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

Green Car Congress

Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.

Low Cost 300
article thumbnail

DOE selects 7 gasification projects for funding; focus on reducing cost of coal conversion

Green Car Congress

The projects conducted through this program are geared toward reducing the cost of coal conversion and mitigating the environmental impacts of fossil-fueled power generation. DOE: $650,000 Non DOE: $162,500 Total: $812,500 (20% cost share). DOE: $564,201 Non DOE: $141,148 Total: $705,349 (20% cost share). Description.

Coal 150
article thumbnail

Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage

Green Car Congress

In a paper in Nature , they suggest that the use of such redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.

Low Cost 374
article thumbnail

GWU team develops low-cost, high-yield one-pot synthesis of carbon nanofibers from atmospheric CO2

Green Car Congress

A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) —Ren et al. —Stuart Licht.

Low Cost 150