This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Francis Wedin, Managing Director. Stringfellow and Patrick F.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
EIT InnoEnergy, the European innovation engine for sustainable energy, announced a partnership with Vulcan Energy Resources Limited (Vulcan), a start-up lithium exploration company, to produce the world’s first completely carbon-neutral lithium in Germany. Earlier post.). —CEO of EIT InnoEnergy Germany, Christian Müller.
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential. 2021.02.015.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. Credit: ESRI, Swansea University.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
The XPrize Foundation today announced the winners of its four-year, US $100 million XPrize competition in carbon removal. Contestants in the carbon removal XPrize had to demonstrate ways to pull carbon dioxide from the atmosphere or oceans and sequester it sustainably. How Does Enhanced Rock Weathering Remove CO2?
Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. MoC via carbon bridge bonds, forming a Ni 1 –C x motif on the carbide surface. Such Ni 1 –C x motifs can effectively stabilize the isolated Ni 1 sites over the ?-MoC 0c10776.
Researchers at Argonne National Laboratory have conducted life cycle analyses (LCAs) for battery-grade lithium carbonate (Li 2 CO 3 ) and lithium hydroxide monohydrate (LiOH•H 2 O) produced from Chilean brines (Salar de Atacama) and Australian spodumene ores. This information will help us achieve our goal of being carbon neutral by 2030.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). Hydrogen production has become the center of attention for carbon-free solution, and more attention has been given to clean methods of hydrogen production. .
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.
Compass Minerals, a leading global provider of essential minerals, announced the successful, third-party conversion testing of its lithium brine resource into both lithium carbonate and battery-grade lithium hydroxide, representing a significant milestone in its previously announced lithium development project. —Kevin S.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting. 202300951
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al. 2022.06.012.
Vulcan Energy Resources’ chemical engineering team has successfully produced its first battery-quality lithium hydroxide monohydrate (LHM) from piloting operations. Earlier post.). Earlier post.). 2 O and very low impurities. Vulcan is aiming to become the world’s first lithium producer with net zero greenhouse gas emissions.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. Led by Environmental Resources Management Limited (ERM). HyNet – low carbon hydrogen plant.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
The deposit contains 136 million tonnes of declared resources. The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy.
To tackle these issues, a team led by Pacific Northwest National Laboratory (PNNL) researchers Ji-Guang (Jason) Zhang and Xiaolin Li has developed a nanostructure that limits silicon’s expansion while fortifying it with carbon. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3?mAh?cm
American Battery Technology Company (ABTC) ( earlier post ) announced results of its third-party Qualified Person (QP)-audited Inferred Resource Report that details the analysis of its lithium deposit at its Tonopah Flats Lithium Project in Nevada. The inferred resources report concludes that Tonopah Flats may hold an estimated 15.8
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. It can be produced from hydrogen and carbon dioxide, mitigating greenhouse gas emissions and storing hydrogen in the process.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. The separation of ethanol and other fuel products from water. 2020.01.002.
SK On, a global electric vehicle (EV) battery manufacturer, signed a lithium supply deal with Australia’s Lake Resources ( earlier post ), a move that will further strengthen its key battery materials supply chain in response to robust business growth and geopolitical risks. This ranks Kachi as one of the world’s top 10 brine resources.
Renault Group and Vulcan Energy Resources , a lithium developer targeting carbon-neutral lithium production ( earlier post ), have signed a lithium offtake term sheet. Vulcan’s Zero Carbon Lithium process flow sheet. Vulcan announced a similar agreement with LG Energy Solutions two weeks ago.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). —Associate Director Lee.
By 2050, Cummins is targeting net-zero carbon emissions. PLANET 2050 focuses on three priority areas: addressing climate change and air emissions; using natural resources in the most sustainable way; and improving communities. Reduce absolute water consumption in facilities and operations by 30%. Cummins Inc.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). Fe 5 C 2 by CO 2 /water in the first hours of the catalytic reaction.
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The most compact form of captured carbon is through its transformation to solid carbon.
UC Riverside (UCR) engineers have developed a way to recycle PET (polyethylene terephthalate) plastic waste, such as soda or water bottles, into a nanomaterial useful for energy storage. Then, using an electrospinning process, they fabricated microscopic fibers from the polymer and carbonized the plastic threads in a furnace.
Hualong One is CNNC’s Generation III pressurized water reactor with complete independent intellectual property rights, developed and designed by the corporation on the basis of more than 30 years of nuclear power research, design, manufacturing, construction and operation experiences. in-containment refuelling water storage tank.
A Northwestern Engineering-led team has developed a highly porous smart sponge that selectively soaks up oil in water. Currently used solutions include burning the oil, using chemical dispersants to breakdown oil into very small droplets, skimming oil floating on top of water and/or absorbing it with expensive, unrecyclable sorbents.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content