This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes. Universal Hydrogen modular capsule.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
A study by University of Chicago economist Esteban Rossi-Hansberg, the Glen A. Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement.
and Waseda University have started testing in Japan of a jointly developed recycling process that efficiently recovers high-purity rare-earth compounds from electrified vehicle motor magnets. Therefore, developing a simpler and more economical process is important to achieve increased recycling in the future. Nissan Motor Co.,
The energy density of traditional lithium-ion batteries is approaching a saturation point that cannot meet the demands of the future—in electric vehicles, for example. nm) carbon nanomembrane (CNM) which contains sub-nanometer sized pores as an interlayer to regulate the mass transport of Li-ions is demonstrated.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Universal Hydrogen’s Dash-8 conversion will be the first commercially-relevant hydrogen-powered aircraft, serving 41 to 60 passengers on routes up to 1,000 kilometers.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al. Nguyen, Cafer T. 2023.101383
There is a high degree of variability in the carbon intensity of hydrogen production, even using the same technologies or pathways. The creation and adoption of these technical protocols will help build and harmonize the hydrogen market, contextualize climate solutions, advance transparency and support global trade in low-carbon hydrogen.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Colorado State University. Synergistic Heat Pumped Thermal Storage and Flexible Carbon Capture System - $1,000,000. University of Pittsburgh.
Asahi Kasei, a diversified Japanese multinational company, has developed a new technology for recycling carbon fiber plastic compounds together with the National Institute of Technology, Kitakyushu College and Tokyo University of Science. Thus, these carbon fiber compounds present in vehicles for weight reduction.
Carbon fibers have already beeen demonstrated as high-capacity Li-ion battery anodes, opening the way for their use as structural electrodes—i.e., This is why the IM CFs with a lithiation mechanism reminiscent of disordered carbons outperform the HM CF with its larger crystallites highly oriented along the fibre direction.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel.
ADM and the University of Illinois announced the successful completion of the Illinois Basin - Decatur Project (IBDP), a carbon capture and storage (CCS) project designed to evaluate and test the technology at commercial scale. million metric tons of carbon dioxide. km pipeline, and injected into the Mt. Simon Sandstone 2.14
The US Department of Energy (DOE) announced $9 million in funding to six projects developing technology to model the low-carbon intermodal freight transportation system of the future. Award amount: $1,500,000) University of Tennessee, Knoxville will develop a cognitive digital twin for the US intermodal freight transportation system.
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
Researchers at George Washington University led by Prof. Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. The source of CO 2 to produce CNOs can be industrial flue gas, or direct air carbon capture.
By uprooting carbon trapped in soil, wild pigs (feral swine), are releasing around 4.9 million metric tonnes of carbon dioxide annually across the globe, the equivalent of 1.1 million cars, according to a new study by an international team led by researchers from The University of Queensland and The University of Canterbury.
The future electrification of aircraft propulsion will have a significant positive environmental effect, helping to reduce emissions and lower the carbon footprint of aviation. University of Cambridge’s Whittle Laboratory. University of Salford’s Acoustics Research Center. Materials specialists, M&I Materials.
American Airlines made a strategic equity investment in Universal Hydrogen Co., This investment makes American the first US airline to make two direct investments focused on the development of both hydrogen-electric propulsion technology and the future of hydrogen distribution logistics. Earlier post.)
Energy efficiency is key to the future of hydrogen as a clean fuel. Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid.
Rice University researchers have won a $3.3-million million Advanced Research Projects Agency - Energy (ARPA-E) OPEEN+ grant to develop a method to convert natural gas into carbon nanotubes for materials that can replace metals in large-scale applications. The process would also produce valuable hydrogen as a side product.
The US Department of Energy announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH) programs.
Lloyd’s Register (LR) and the University Maritime Advisory Services (UMAS) have published their latest assessment of the current and future fuels available to shipping to help define the optimum solutions as the maritime industry seeks to reduce greenhouse gas emissions. —“Techno-economic assessment of zero-carbon fuels”.
In a first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels. This has been one of the major challenges in moving towards a greener, hydrogen-fueled future, where steel tanks and pipelines are essential components that must be able to survive in pure hydrogen environments.
Since internal combustion engines will remain the primary mode of choice for mobility in the foreseeable future, both alternative (renewable) fuels and high-performance combustion concepts/ engines using fuels adapted for that purpose will be preferred for reducing the combustion impact on climate change. 2018) “Future transportation fuels.”
The new companies are focused on creating electrochemical systems that can help reduce carbon emissions in hard-to-decarbonize sectors and represent the program’s fourth cohort. Applications include green hydrogen production, hydrogen fuel cells and carbon capture and utilization (CCU).
Researchers from Queen Mary University of London and University College London (UCL) have produced graphene via a special, scalable technique and used it to develop hydrogen fuel cell catalysts. We’ve shown that by using graphene instead of the typical amorphous carbon as a support material we can create ultra-durable catalysts.
Now, a team from the University at Buffalo, Southern Illinois University, University of South Carolina and Brookhaven National Laboratory reports a highly active and stable Ru-free catalyst from earth-abundant elements for efficient carbon-free hydrogen generation via ammonia decomposition.
Ramaco Carbon is partnering with Oak Ridge National Laboratory to develop new, large-scale processes for making graphite from coal. The conversion of coal to higher value materials, such as graphene, graphite or carbon nanotubes, is of high interest, and a number of researchers have proposed processes.
This project is part of CEMEX’s Future in Action program to reduce its carbon footprint and contribute to a circular economy and an integral component of CEMEX’s master plan to develop a carbon neutral operation at its Rüdersdorf cement plant by 2030. ENERTRAG is a renewable-energy company based in Brandenburg, Germany.
Purdue University and Duke Energy plan to explore the feasibility of using advanced nuclear energy to meet the campus community’s long-term energy needs. No other option holds as much potential to provide reliable, adequate electric power with zero carbon emissions. Approximately 50% of campus electricity is purchased from Duke Energy.
Researchers at the Karlsruhe Institute of Technology (KIT) and the University of Toronto have proposed a method enabling air conditioning and ventilation systems to produce synthetic fuels from CO 2 and water from the ambient air. In addition, they expect carbon efficiency—i.e. kilograms per hour.
As British Airways looks towards its Centenary next year, the airline, in collaboration with Cranfield University, has challenged academics from across the UK to develop a sustainable alternative fuel which could power a commercial aircraft on a long-haul flight, carrying up to 300 customers with zero net emissions.
BHP has signed an agreement for piloting of carbon capture and utilization technology with China’s HBIS Group Co., As part of this new project, HBIS and BHP will trial pilot-scale demonstrations of carbon capture and utilization technologies at HBIS’ steel operations in China.
Wärtsilä’s X-Ahead project is aimed at developing deep expertise of both the technical and business potential of Power-to-X, which will be used to promote a carbon-neutral economy for Finland. It will also act as a base for defining Wärtsilä’s role in this field as part of the global transition to carbon-neutral solutions.
A study by researchers at CU Boulder and Edinburgh Napier University finds that high-density, low-rise environments such as those found in Paris are the optimal urban form when looking to reduce greenhouse gas emissions over their whole life cycle. There is a growing belief that building taller and denser is better. —Jay Arehart.
Triumph: final chassis, including frame, rear sub-frame, cockpit, panels and wheels, final drive system including transmission and Gates Carbon belt drive, electronics, Öhlins USD cartridge forks, unique prototype Öhlins RSU, Brembo M50 monobloc calipers, and Triumph motorcycle control software.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Policies to entice consumers away from fossil-fuel powered vehicles and normalize low carbon, alternative-fuel alternatives, such as electric vehicles, are vital if the world is to significantly reduce transport sector carbon pure-emissions, according to a new study. Note the different scaling used in the graphs. McCollum et al.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content