This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Researchers from the University of Birmingham have designed a novel adaptation for existing blast furnaces that could reduce CO 2 emissions from the steelmaking industry by nearly 90%. If implemented in the UK alone, the system could deliver cost savings of £1.28 billion in 5 years while reducing overall UK emissions by 2.9%.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Led by Cranfield University. Contract value: £3.12
A study by University of Chicago economist Esteban Rossi-Hansberg, the Glen A. Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes. Universal Hydrogen modular capsule.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions.
Constellium SE is leading a new consortium of automakers and suppliers to develop lower carbon, lower cost aluminum extrusion alloys. Aluminum extrusions and components for the CirConAl project will be prototyped and tested at Constellium’s University Technology Center (UTC) located at Brunel University London.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Later in the program, teams that move to Phase 2 will focus on building components, unit operations, and prototype systems to reduce technical risks and costs.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
The US Department of Energy (DOE) has selected Arizona State University to lead the seventh Clean Energy Manufacturing Innovation Institute. EPIXC will also address the challenge of integrating these new processes into existing facilities designed around conventional heating technologies.
ClearFlame Engine Technologies, a startup developing net-zero engine technology ( earlier post ), announced the publication of an independent study that finds ClearFlame’s technology could help fleet owners and other heavy-duty truck operators lower total costs while meeting sustainability goals sooner than currently available alternatives.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
Jacobson, professor of civil and environmental engineering at Stanford University, suggests that carbon capture technologies are inefficient and increase air pollution. All sorts of scenarios have been developed under the assumption that carbon capture actually reduces substantial amounts of carbon. —Mark Jacobson.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al. —Leung et al.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
The new catalyst contains cobalt interspersed with nitrogen and carbon. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. —Yuyan Shao.
New research led by Mohammad Masnadi, assistant professor of chemical and petroleum engineering at the University of Pittsburgh Swanson School of Engineering, offers a closer look at the relationship between decreasing demand for oil and a resilient, varied oil market—and the carbon footprint associated with both.
A team of researchers at George Washington University led by Prof. Massive carbon dioxide avoidance by the addition of carbon nanotubes synthesized from CO 2 to CNT-composites. (A) A) Carbon mitigation with CNT-cement. (B) B) Carbon mitigation with CNT-Al. Licht et al. 300 tons of CO 2 steel production.
University of Delaware engineers have demonstrated an effective way to capture 99% of carbon dioxide from the ambient air feed to an hydroxide exchange membrane fuel cell (HEMFC) air using a novel electrochemical system powered by hydrogen. Source: University of Delaware.
Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Copyright Toyohashi University Of Technology. mA cm –2 ). —Phuc et al.
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
Researchers at George Washington University led by Prof. Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. The source of CO 2 to produce CNOs can be industrial flue gas, or direct air carbon capture.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. Currently, hydrogen can cost up to $15 per kilogram. UBC TMC uses liquid metals in a continuous process. Image: MéridaLabs.
A patented process for converting alcohol sourced from renewable or industrial waste gases into jet or diesel fuel is being scaled up at the US Department of Energy’s Pacific Northwest National Laboratory with the help of partners at Oregon State University and the carbon-recycling experts at LanzaTech. Image: Oregon State University).
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Under current policies, home energy storage systems would also often increase carbon emissions, according to a study by a team of researchers at the University of California San Diego published in the journal Environmental Science & Technology. —lead author Oytun Babacan, a postdoc at the School of Global Policy and Strategy.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. —Mo et al. 2 and a low cell voltage of 1.70
Now, researchers at Michigan Technological University have demonstrated a carbonate-superstructured solid fuel cell (CSSFC) in which in situ generation of superstructured carbonate in the porous samarium-doped ceria layer creates a unique electrolyte with ultrahigh ionic conductivity of 0.17 S⋅cm −1 at 550 °C. . …
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The project results therefore contribute to Sustainable Development Goal 13 on Climate Action of the UN Global Compact through decarbonization with the major advantage of doing so at a lower cost than the technologies currently in use. million, with a total of nine partners (companies, technology centers and universities).
The US Department of Energy (DOE) announced the award of approximately $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs). Enabling Production of Low Carbon Emissions Steel Through CO 2 Capture from Blast Furnace Gases.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbon fiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost. 3M Company.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. —University of Utah chemical engineering assistant professor Swomitra “Bobby” Mohanty, co-author. Yen-Hsun Tseng, Swomitra K. Mohanty, John D.
Chemists at Cornell University have discovered a class of nonprecious metal derivatives—transition metal nitrides (TMNs)—that can catalyze the oxygen reduction reaction (ORR) in alkaline fuel cells about as well as platinum, at a fraction of the cost. The researchers, led by Héctor D. Abruña, the Émile M. —Zeng et al.
In a study published in Nature Climate Change , an international research team reports finding limited evidence that individual or household rebates have increased public support for carbon taxes in Canada and Switzerland. —Mildenberger et al. Taxpayers often remain unaware of the rebate’s existence or underestimate the rebate’s value.
A team from Nanjing University, Hubei Normal University and Zhejiang University has developed a cobalt-doped graphdiyne catalyst for catalytically decomposing ammonia (NH 3 ) to generate H 2. Graphdiyne (GDY) is a new two-dimensional (2D) carbon allotrope, similar to graphene.
An international collaboration led by Cranfield University will examine the potential for the low-carbon production of hydrogen from natural gas. MW th pilot plant at Cranfield University to test the innovative hydrogen production technology that substantially reduces greenhouse gas emissions. The proposed maximum output of 1.5
Researchers at the University of Surrey (UK) are developing a process to capture carbon dioxide directly from the air and then use dynamic catalysis to create methanol—a valuable chemical that, made this way, could be carbon-negative. Its value could offset the cost of direct air capture. —Dr Duyar.
The US Department of Energy announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH) programs.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content