This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Boyang Li of the University of Pittsburgh is co-lead author of the paper.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —Dr Wang.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. This as an ideal example of chemical engineering for a 21 st century green technology. Potter, Daniel J.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. UBC clean hydrogen technology deployed to Alberta in a $7-million collaboration. Image: MéridaLabs. Image: MéridaLabs.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The key aims of this work are to advance the technology readiness level (TRL) of Sparc Hydrogen’s PWS reactor and provide valuable data and information for the subsequent piloting phase.
Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. The material can be used as either an anode or a cathode, and demonstrates high activity and stability in the production of hydrogen and oxygen in the electrolysis of water. Zhang, S.L., and Lou, X.W.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). The microwave plasma source (MPS) based method is one of the promising technologies for hydrogen production. —Chehade et al.
We at Advent are committed to bringing HT-PEM technology to the market. We believe that HT-PEM represents not only a breakthrough for heavy-duty automotive technology but also for aviation, portable, and off-grid power generation. The purpose of the development program is to use HT-PEM technology operating at 80 ?C
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses.
Researchers at the University of Exeter (UK) have developed a novel p-type LaFeO 3 photoelectrode using an inexpensive and scalable spray pyrolysis method. The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability.
The global transportation of ammonia by pipeline and bulk carrier is already a well-developed technology. Researchers at Monash University in Australia are proposing a roadmap to renewable ammonia being produced in the future at a scale that is significant in terms of global fossil fuel use. Credit: Joule , MacFarlane et al.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. A) CO 2 hydrate where CO 2 molecules are trapped in water clusters at high pressures and low temperatures. Nguyen, Cafer T. 2023.101383
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al.
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
Researchers from the University of Twente in The Netherlands have developed a new high-entropy perovskite oxide (HEO) as a high-activity electrocatalyst for the oxygen evolution reaction (OER)—the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 2 and 85 °C of only 1.51 kWh/kg hydrogen (vs.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. bacteria, fungi, and algae) may be grown on non-arable land and with saline water, wastewater or/and produced water from mineral and petroleum extraction.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
The Audi Environmental Foundation, a subsidiary of AUDI AG founded in 2009, has joined forces with the Freiberg University of Mining and Technology to research new ways of mining high-tech elements. At the Freiberg University of Mining and Technology, the search for suitable partners for application at other sites is in full swing.
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Stringfellow and Patrick F.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
A research team led by Daegu Gyeongbuk Institute Of Science And Technology (DGIST) Professor Jong-Sung Yu in Korea, with colleagues at UC Berkeley and Xi’an Jiaotong University in China, has successfully developed a new catalyst synthesis method that can efficiently decompose water into oxygen and hydrogen using solar light.
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Credit: DICP. —Wang et al.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( the ocean and surface waters) that received their CO 2 directly from ambient air. DE-FOA-0002481 ).
BASF and the Catholic University of the North (UCN) in Antofagasta, Chile, have signed a collaboration agreement to promote research, development and innovation in mining. To meet these challenges in the copper industry, BASF Mining Solutions developed LixTRA Technology for Heap and Dump leach processes.
Canada-based Forge Hydrocarbons Corporation, a spin-off from the University of Alberta ( earlier post ), has received a US$4-million from Lockheed Martin under the Industrial and Technological Benefits (ITB) Policy. Forge’s LTH technology reduces green house gas emissions by over 70% compared to petroleum-based fuels.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Upon discharge from a nuclear reactor, the UNF is initially stored in steel-lined concrete pools surrounded by water.
Scientists from ExxonMobil, the Georgia Institute of Technology and Imperial College of London have published in the journal Science joint research on potential breakthroughs in a new membrane technology that could reduce emissions and energy intensity associated with refining crude oil. —Thompson et al. Imperial College London.
Southwest Research Institute has launched a new automotive emissions aftertreatment catalyst testing facility, expanding the capacity and capabilities of its Universal Synthetic Gas Reactor (USGR) technology. The Catalyst Technology Center includes two new USGR systems, bringing SwRI’s testing capacity to six systems.
Chemical engineers at UNSW Sydney and University of Sydney have developed a hybrid plasma electrocatalytic process for the production of sustainable (“green”) ammonia. Hybrid plasma-electrochemical technology for green ammonia production. The way that we did it does not rely on fossil fuel resources, nor emit CO 2. —Dr Jalili.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). Credit IBS.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Recently, they have succeeded in increasing the light energy conversion efficiency by applying this technology to hematite (?-Fe under 600nm).
Eden’s novel electrical reservoir stimulation technology increases directional permeability in subsurface geologic reservoirs. This project is being led by Idaho National Labs, who has been working closely with Eden to develop the technology for hard rock permeability enhancement applications. Source: Eden.
Apart from the rapid development of battery technology, hydrogen is a good complementary option as an alternative fuel for long-distance transport. When in use, fuel cells do not cause any climate-damaging emissions, as they only emit water vapor. Cooperation with universities is also planned.
The US Department of Energy (DOE) announced $40 million in funding to advance the development and deployment of clean hydrogen technologies. Areas of interest in support of Hydrogen Shot include: HydroGEN: Solar Fuels from Photoelectrochemical and Solar Thermochemical Water Splitting. DE-FOA-0002792 ).
A new way of anchoring individual iridium atoms to the surface of a catalyst significantly increased its efficiency in splitting water molecules, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported in an open-access paper in Proceedings of the National Academy of Sciences (PNAS). …we
The feasibility study to conceptualize the hydrogen fuel-cell propulsion technology for the vessel was initially completed in 2020 by Sandia National Laboratories, Glosten, and Scripps. The new vessel will be operated by Scripps Institution of Oceanography at UC San Diego. Earlier post.)
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content