article thumbnail

MIT team exploring using LOHCs directly on-board hydrogen-fueled trucks

Green Car Congress

A team of MIT researchers led by William H. Green, the Hoyt Hottel Professor in Chemical Engineering, is developing a technology that allows liquid organic hydrogen carriers (LOHCs) not only to deliver hydrogen to the trucks, but also to store the hydrogen onboard.

MIT 360
article thumbnail

MIT researchers develop optimized sulfidation separation process for rare earth and other key metals

Green Car Congress

New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries by making it easier to separate these rare metals from mining ores and recycled materials. —Antoine Allanore.

MIT 396
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

MIT researchers and colleagues at two national laboratories have developed a sulfonamide-based electrolyte that enables stable cycling of a commercial LiNi 0.8 In a paper in the journal Nature Energy , the MIT team reports that a lithium-metal battery with the electrolyte delivers a specific capacity of >230?mAh?g

Ni-Li 284
article thumbnail

MIT and Lamborghini file patent on new MOF material for supercapacitors

Green Car Congress

The collaboration began three years ago when Automobili Lamborghini joined the MIT-Italy Program, and took a further step forward in 2017 with the launch of two research projects, one with Professor Mircea Dinc? At MIT, the Dinc? Battery materials.

MIT 210
article thumbnail

MIT Sequential Decomposition Synthesis process produces thin solid-state electrolytes without sintering

Green Car Congress

A team from MIT has developed a new approach to fabricating oxide-based solid-state electrolytes that are comparable in thickness to the polymer separators found in current Li-ion batteries without sintering: sequential decomposition synthesis (SDS). Recent progress in solid-state battery (SSB) electrolytes such as Li garnets (e.g.,

MIT 243
article thumbnail

MIT team engineers yeast to be more tolerant to toxic byproducts, boosting biofuels production; “tolerance module”

Green Car Congress

To try to expand biofuels’ potential impact, a team of MIT engineers has now found a way to expand the use of a wider range of nonfood feedstocks to produce such fuels. The MIT researchers developed a way to circumvent that toxicity, making it feasible to use those sources, which are much more plentiful, to produce biofuels.

MIT 246
article thumbnail

Lamborghini licenses MIT’s Cobalt-free organic battery tech for EVs – ET Auto

Baua Electric

Researchers from Massachusetts Institute of Technology ( MIT ), including one of Indian-origin, have designed a new battery material that could offer a more sustainable, cobalt-free way to power electric cars. This material consists of many layers of TAQ, an organic small molecule that contains three fused hexagonal rings.

Auto 52