article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study. Every day, I passed this same plant.

El Paso 459
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38

Water 459
article thumbnail

New stable water-splitting catalyst doesn’t require expensive iridium

Green Car Congress

Researchers have developed a nickel-stabilized, ruthenium dioxide (Ni-RuO 2 ) anode catalyst for proton exchange membrane (PEM) water electrolysis. The Ni-RuO 2 catalyst shows high activity and durability in acidic OER for PEM water electrolysis. Illustration by Zhen-Yu Wu. 2 , suggesting potential for practical applications.

Water 411
article thumbnail

Study finds direct seawater splitting has substantial drawbacks to conventional water splitting, offers almost no advantage

Green Car Congress

A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.

Water 497
article thumbnail

Pitt engineers using membrane distillation to recycle water used in fracking and drilling

Green Car Congress

Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The method is already being tested in Texas, North Dakota, and most recently in New Stanton, Pa.

Water 303
article thumbnail

Sparc Hydrogen to test photocatalytic water splitting (PWS) reactor at CSIRO

Green Car Congress

The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. Sparc Hydrogen has received funding of $28,688 through the CSIRO Kick-Start Program to contribute towards the costs of the prototype testing.

Water 396
article thumbnail

bp leads $12.5M Series A investment in water vapor electrolyzer innovator Advanced Ionics

Green Car Congress

The new capital will help catalyze Advanced Ionics’ growth and facilitate the initial deployment of its water vapor electrolyzer technology for heavy industry. Water vapor electrolyzers address two of the biggest obstacles to expanding green hydrogen production: cost and electricity requirements.

Water 195