Remove Carbon Remove Group Remove Sodium
article thumbnail

UP Catalyst CO2-derived carbon nanotube electrode material boosts cycle life in Na-ion batteries

Green Car Congress

Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7

article thumbnail

Fraunhofer team develops process to recycle carbon black from car tires

Green Car Congress

Waste tires have been used mainly for recovering energy sources; only small proportions of the carbon black contained in these tires are recycled, since mineral ash accounts for around 20% of its content. Around three kilograms of carbon black—also known as industrial soot—are found in a standard car tire. © Fraunhofer IBP.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Rio Tinto commits $2.4B for Jadar lithium project; planning 58,000 tons/year lithium carbonate by 2029

Green Car Congress

The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy. The deposit contains 136 million tonnes of declared resources.

article thumbnail

Sodium-ion energy storage in nanocellular carbon foams shows high capacity and rate retention; not an intercalation battery

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) report in a paper in the ACS journal Nano Letters on high-capacity, high-rate sodium-ion (Na-ion) energy storage in functionalized high-surface-area nanocellular carbon foams (NCCF). Sodium-ion intercalation batteries—i.e., Earlier post.)

article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

article thumbnail

Chinese steel group Tsingshan investing $375M to build lithium plant in Argentina with Eramet

Green Car Congress

—Christel Bories, Eramet group Chair and CEO. The project consists in extracting brine from the salar and processing it into lithium carbonate. Purification of the lithium, then reaction with sodium carbonate to convert it to lithium carbonate. Background.

article thumbnail

Phillips 66 progressing its conversion of California refinery to renewable fuels

Green Car Congress

The conversion is expected to reduce the facility’s greenhouse gas emissions by 50% and help California meet its lower-carbon objectives. A technical collaboration with Faradion, a leader in sodium-ion battery technology, to develop lower-cost and higher-performing anode materials for sodium-ion batteries.