This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbonhydrogen production. The hydrogen projects receiving funding are: Dolphyn. Acorn Hydrogen Project.
The Hydrogen Council has published a new report, Path to Hydrogen Competitiveness: A Cost Perspective , demonstrating that the cost of hydrogen solutions will fall sharply within the next decade, sooner than previously expected. Significant cost reductions are expected across different hydrogen applications.
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green HydrogenCost Reduction: scaling up electrolyzers to meet the 1.5 Source: IRENA.
Cemvita Factory announced multiple developments with its Gold Hydrogen business. Cemvita defines Gold Hydrogen as the biological production of hydrogen in the subsurface through the consumption of trapped or abandoned resources. The hydrogen production in this trial exceeded our expectations. billion in 2020.
The Saudi Arabian Oil Company (Aramco) signed five agreements with leading French companies, including an agreement to explore a hydrogen-powered vehicle business with Gaussin , a pioneer in clean and intelligent transport solutions. Gaussin hydrogen-powered Dakar racer. Additional MoUs.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
The Yuchai YCK16H hydrogen-fueled engine was successfully ignited in Yulin, Guangxi. liters and a maximum horsepower of 560 hp, is the largest hydrogen-fueled engine with the largest displacement and horsepower in China. The engine, with a displacement of 15.93
in conjunction with the Government of Canada and the Province of Alberta, announced a multi-billion dollar plan to build a landmark new net-zero blue hydrogen energy complex. Canada’s clean energy diversification strategy and regulatory framework make clear that hydrogen is a key enabler for carbon neutrality by 2050.
By Jake Stones, hydrogen editor at ICIS ICIS data shows that renewable hydrogen could be sold for below €1/kg if a producer obtains the maximum support provided by the European Hydrogen Bank , according to the heads of terms for the bank published by the European Commission on 31 March. 1/kg hydrogen. 1/kg hydrogen.
The research focuses on zero-carbonhydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry. The team’s goal is to reduce carbon emissions from the roughly 25,000 locomotives already in use in North America. billion pounds of carbon dioxide. a software developer.
(SoCalGas) is partnering with a development team to advance a new process that converts natural gas to hydrogen, carbon fiber, and carbon nanotubes. In addition, this technology will virtually eliminate CO 2 emissions from the methane-to-hydrogen process. The CRADA will fund PNNL and WVU to develop the technology.
a global supplier of hydrogen fuel cell-powered commercial vehicles, announced a joint venture to build up to 100 hydrogen hubs across the United States and globally. into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven SR , a renewable fuels company, and Hyzon Motors Inc.,
Cummins and Tata Motors signed a Memorandum of Understanding (MoU) to collaborate on the design and development of low- and zero-emission propulsion technology solutions for commercial vehicles in India, including hydrogen-powered internal combustion engines (H2ICE), fuel cells (FC), and battery electric vehicle (BEV) systems. Cummins B6.7H
The North American Council for Freight Efficiency (NACFE) released its latest Guidance Report , Making Sense of Heavy-Duty Hydrogen Fuel Cell Tractors. Almost every day there is a new announcement about hydrogen fuel cell electric trucks. We published this report to help make sense of hydrogen for commercial freight movement.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions.
Hydra Energy, the Hydrogen-as-a-Service (HaaS) provider for commercial fleets looking to reduce emissions and costs with limited risk and no up-front investment ( earlier post ), has delivered its first hydrogen-converted, heavy-duty truck to paying fleet customer Lodgewood Enterprises. —Lodgewood President Arlene Gagne.
A Ford-led consortium is testing hydrogen fuel cell technology on the E-Transit in a small UK-based prototype fleet developed by Ford Pro. The UK-based project will establish if hydrogen fuel cell technology can help to deliver enhanced zero-emission-driving range for E-Transit customers with energy-intensive use cases.
A new report from Australia’s national science agency CSIRO shows that clean hydrogen can significantly reduce aviation emissions with potential benefits seen within five years. This involves the replacement of on-airport ground support equipment, currently running on liquid fuels and batteries, with hydrogen powered fuel cell alternatives.
Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. A complete ammonia conversion to hydrogen was achieved at an economically feasible 450 ?C
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
The United States has an extensive network of approximately 3,000,000 miles of natural gas pipelines and more than 1,600 miles of dedicated hydrogen pipeline. The HyBlend team will test pipeline materials in varying concentrations of hydrogen at pressures up to 100 bar to assess their susceptibility to hydrogen effects.
Continuing to speed up the adoption of hydrogen in long-haul transportation, Hydra Energy —the first Hydrogen-as-a-Service provider for commercial fleets—announced a strategic partnership with Chemtrade. Natural gas distributors can also use the green hydrogen to meet renewable content requirements.
An economic study by research group Steer, and commissioned by T&E, looked at future operating costs of hydrogen planes on intra-European flights and found that they could be an efficient, cost competitive technology to decarbonize the sector, provided kerosene is taxed adequately. (If GJ—approximately €0.37/L.)
A 27-tonne hydrogen fuel cell rigid truck built by VDL started its first demonstration with BREYTNER as part of the EU-funded H2-Share project in Schelluinen, the Netherlands. Wystrach GmbH built a low-energy mobile hydrogen refueler to accompany the truck on its demonstration sites. This hydrogen truck is unique in the Benelux.
RINA, the inspection, certification and consulting engineering multinational, and AFRY, a European leader in engineering, design, and advisory services, have undertaken an initial study of how the Gulf region and Europe could be linked directly with a pipeline to transport low-carbonhydrogen. million tonnes of hydrogen annually.
Daimler Truck AG and TotalEnergies signed an agreement on their joint commitment to the de-carbonization of the road freight in the European Union. In particular, TotalEnergies has the ambition by 2030 to operate directly or indirectly up to 150 hydrogen refueling stations in Germany, the Netherlands, Belgium, Luxemburg and France.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. The project would capture and send for storage up to two million tonnes of carbon dioxide (CO?) Clean hydrogen is an essential complement to electrification on the path to net zero.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom’s technologies can be critical in enabling South Korea to execute on its government-mandated Hydrogen Economy Roadmap.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
The decisive factor for the switch to battery-electric vehicles is the energy cost advantage compared to hydrogen and diesel. Electricity and hydrogen are the two key energy carriers for a low-carbon future, and hydrogen will play a vital role in industry, shipping and synthetic aviation fuels. Plötz (2022).
The UK government has launched a Hydrogen Strategy intended to create a thriving low-carbonhydrogen sector—blue and green—in the UK over the next decade and beyond. The government says that a booming, UK-wide hydrogen economy could be worth (£900) million (US$1.24
The European Union adopted strategies for energy system integration and hydrogen, paving the way “towards a more efficient and interconnected energy sector, driven by the twin goals of a cleaner planet and a stronger economy.”. The Commission will propose a new classification and certification system for renewable and low-carbon fuels.
A team at Imperial College London has examined the relative costs of carbon mitigation from a lifecycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources. Proportional reduction in emissions against percentage cost increase relative to SMR.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
Hyzon Motors ( earlier post ) signed a memorandum of understanding (MoU) with TotalEnergies that reinforces the two companies’ shared commitment to evaluate and develop hydrogen refueling and vehicle supply solutions for long-haul transport to customers across Europe. The MoU strengthens the existing commercial relationship.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
In a new piece of research, BloombergNEF (BNEF) finds that the levelized cost of hydrogen (LCOH 2 ) made from renewable electricity is set to fall faster than it previously estimated. These costs are 13% lower than BNEF’s previous 2030 forecast and 17% lower than its old 2050 forecast. MMBtu) by 2050 in most modeled markets.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
As part of the joint work, the parties plan to evaluate the technical and commercial aspects of a potential project for the production of environmentally friendly hydrogen for Metalloinvest factories located in Belgorod and Kursk regions. Metalloinvest is already looking at modernizing equipment to use up to 30% hydrogen as a reducing gas.
million from the US Department of Energy (DOE) to develop and validate technology that will reduce the cost of manufacturing high-performance carbon fiber by 25% to make composite natural gas or hydrogen fuel tanks to power cars and trucks. The Institute for Advanced Composites Manufacturing Innovation (IACMI) will receive $2.7
The California Energy Commission has awarded GTI and Sierra Northern Railway nearly $4,000,000 to fund the design, integration, and demonstration of a hydrogen fuel cell switching locomotive to support the Hydrogen Fuel Cell Demonstrations in Rail and Marine Applications at Ports (H2RAM) initiative.
IHS Markit forecasts that annual global investments in green hydrogen—hydrogen production powered by renewable sources—will exceed US$1 billion by 2023. The elevated investment outlook is attributed to falling costs and policy support from governments looking to shift towards low-carbon economies.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content