Remove Hydrogen Remove Low Cost Remove Study Remove Water
article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. who led the study. who led the study. Nickel, however, is not as quick and effective at breaking down water into hydrogen.

El Paso 459
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. —Song et al. Song et al.

Water 459
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.

Hydrogen 475
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,

Low Cost 315
article thumbnail

Chinese researchers develop new alloy for on-board hydrogen production for fuel cells

Green Car Congress

Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. Credit: Jing Liu. In 2015, Zhang et al.

Hydrogen 476
article thumbnail

bp plans UK’s largest hydrogen project; 1GW of blue hydrogen

Green Car Congress

bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030. which is then captured and permanently stored.

Hydrogen 311
article thumbnail

DGIST, PNNL team develops efficient, low-cost anode material for water electrolysis

Green Car Congress

A commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm ?2 V—70 mV lower than that of the IrO 2 –anode water electrolyzer. In electrocatalytic water splitting, oxygen gas generates in the anode due to the oxygen evolution reaction (OER). Researchers at S. 2 at a cell voltage of 1.59

Low Cost 150