Remove Hydrogen Remove Low Cost Remove Solar Remove Universal
article thumbnail

Japan team evaluates battery-assisted low-cost hydrogen production from solar energy

Green Car Congress

Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg

Low Cost 403
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. Illustration by Jia Liang. —Jia Liang. and Ruth L.

Low Cost 243
article thumbnail

SunHydrogen extends research agreement with University of Iowa; development of Gen 2 multi-junction nanoparticles for hydrogen production

Green Car Congress

SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. As we are set to begin the production phase of our GEN 1 hydrogen panels, our research efforts will become increasingly focused on GEN 2.

Iowa 221
article thumbnail

Argonne and University of Illinois to form Midwest Hydrogen and Fuel Cell Coalition

Green Car Congress

The states account for 35% of US-installed wind capacity and while the region only produces about 4% of the nation’s solar energy, a number of pending large solar farms and community solar projects will greatly increase the region’s solar generating capacity.

Illinois 186
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. Different sources of light were used, ranging from a laser to white light simulating the solar spectrum.

Houston 268
article thumbnail

SOFC-maker Bloom Energy announces initial strategy for hydrogen market entry; partnership with SK

Green Car Congress

Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom’s technologies can be critical in enabling South Korea to execute on its government-mandated Hydrogen Economy Roadmap.

Hydrogen 386
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 V or more is generally needed because of the low reaction kinetics. HyperSolar, Inc. announced that it had reached 1.25 Click to enlarge.

Low Cost 246