This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
I’ve always been passionate about sustainable tech, and I’m diving into DIY EV conversions for the first time. My goal is to convert a classic VW Beetle into an electric vehicle. Any tips or resources for starting out would be greatly appreciated! Looking forward to connecting with this awesome community.
Choosing a fleet-as-a-service model can eliminate that risk, while converting capital expenditure to operating expense. We take everything that a fleet would have to invest capital in, and we convert CapEx into OpEx. We warehouse all the technology risks on behalf of customers. A lot of those are being served by depot providers.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%
Most of us naturally associate biological CO 2 conversion with photosynthesis in plants and algae. While engineering photosynthetic hosts to convert CO 2 into high-value products is sensible, dependence on sunlight limits its tractability and scalability. Their paper is published in the journal Joule. Acetogenic microbes (e.g.,
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. The study will drive further research into how to develop a practical industrial catalyst for selectively converting CO 2 into ethanol.
Researchers from the University of Houston, with colleagues at the University of São Paolo in Brazil, have demonstrated how copper-resistant bacterium from a copper mine in Brazil convert CuSO 4 (copper sulfate) ions into zero-valent Cu (metallic copper). An open-access paper on their research is published in Science Advances. Gracioso et al.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Conversion into liquid fuels would be advantageous because they have high energy density and are safe to store and transport. These could then be burned as needed. and Xiong, Y.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. The third catalyst in the system, which is typically incompatible with the first catalyst, then converts this ester to methanol.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. A paper on the work is published in ChemSusChem.
Panasonic has developed an artificial photosynthesis system using a gallium nitride photoelectrode and a metal catalyst which uses sunlight to convert CO 2 mainly to formic acid (an important intermediate in chemical synthesis) at an efficiency (solar energy to chemical energy) of 0.2%—a Click to enlarge. Hiroshi Hashiba et al.
For the future, it will be important to commercialize advanced biofuel conversion technologies, which utilize a broader and more sustainable feedstock base. Under these conditions, biomass is converted into a crude bio-oil, which is separated from the process water behind the reactor.
Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability. Skaggs et al. demand in 2016. Skaggs et al. demand in 2016. —Ou et al. 1c06561.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. It can be used by refineries to upgrade their feedstock or to convert biomass to oil.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
They were able to convert amorphous polypropylene and everyday bags and bottles effectively to lubricants with yields up to 80+%. The reaction network involves the sequential conversion of polymer into the oil with a gradual decrease of molecular weight until ?700–800 A paper on their work is published in the journal ACS Catalysis.
The Manono Project is owned by AVZ (60%), La Congolaise d’Exploitation Minière SA (30%) (Cominiere, a State-owned enterprise) and Dathomir Mining Resources SARL (10%) (Dathomir, a privately owned company). AVZ is responsible for funding expenditure to completion of a feasibility study and a decision to mine.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. This study showcases the potential of bioelectrochemical conversion of CO 2 to butyric acid and its subsequent upgrade to butanol in microbial electrolysis cells.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. Resources Esmaeilirad, M., Harzandi, A.M.
By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. Among the metals studied, copper is the only metal known for its intrinsic ability to convert CO 2 into hydrocarbons and alcohols via electrochemical CO 2 RR. —Kim and Palmore (2020). Palmore, G.T.R. Palmore, G.T.R.
Scientists at Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel heterostructured photocatalyst using titanium and copper, two abundant and relatively inexpensive metals, for the conversion of CO 2 into CH 4. Apart from its CO 2 conversion capabilities, the proposed photocatalyst has other benefits.
Our partnership with Twelve provides us with the feedstock needed to create critical resources like ethanol without adding CO 2 to the atmosphere. This work will see Twelve converting CO 2 to CO, which will in turn be converted by LanzaTech’s proprietary microbe to isopropyl alcohol (IPA).
The boron compounds can efficiently target atmospheric nitrogen and convert it to ammonium chloride after the addition of an acid. This conversion takes place in solution, at room temperature, and without the need for metals or hydrogen gas. Resources. Bennaamane, B. Rialland, L. Fustier-Boutignon, C.
The conversion normally requires significant amounts of energy in the form of high heat—a temperature of at least 700 ?C, Illustration of a novel room-temperature process to remove CO 2 by converting the molecule into CO. C, hot enough to melt aluminum at normal atmospheric pressure. Credit: NIST. —Renu Sharma.
Martin, Javier Pérez-Ramírez (2021) “Direct Conversion of Polypropylene into Liquid Hydrocarbons on Carbon?Supported Following this strategy, the selectivity of 80% toward motor oil (C 21 –C 45 ) can be achieved. The work provides some guidelines for catalyst design in the field of plastic hydrocracking. Shibashish D. Jaydev, Antonio J.
Researchers at the University of Virginia (UVA) have devised a process for converting retired Li-ion battery anodes to graphene and graphene oxide (GO). A paper on the work is published in the ACS journal Nano Letters. The findings present a new promise for smartly recycling Li-ion batteries. —Zhang et al. 8b04410.
In the first step of a multi-step ethanol-to-jet-fuel process earlier developed by DOE’s Oak Ridge National Laboratory (ORNL’s), a catalyst is used to convert ethanol into butene-rich C 3+ olefins, important intermediates that can then be processed into aviation fuels. The research was published in ACS Catalysis. —Zhenglong Li.
A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China. —Wu et al. —Susumu Kitagawa, materials chemist at Kyoto University.
Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. Electrolysis must convert CO into products at a high rate with a low overall energy demand in order to be viable.
Researchers from the University of Wisconsin Madison and ExxonMobil Research and Engineering have devised a two-stage process by which an alcohol such as ethanol or 1-butanol can be converted with high yields into distillate-range ethers and olefins by combining Guerbet coupling (the coupling of two alcohol molecules) and intermolecular dehydration.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
Researchers at the US Naval Research Laboratory (NRL), Materials Science and Technology Division have demonstrated novel NRL technologies developed for the recovery of CO 2 and hydrogen from seawater and their subsequent conversion to liquid fuels. The gases are then converted to liquid hydrocarbons by a metal catalyst in a reactor system.
Methanotrophic bacteria remove methane from the environment and convert it into methanol. An interdisciplinary team at Northwestern University has found that the enzyme responsible for the methane-methanol conversion catalyzes this reaction at a site that contains just one copper ion. The study is published in the journal Science.
developed a halogen conversion–intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 mAh g -1 (for the total weight of the electrode) at an average potential of 4.2 Proposed conversion–intercalation chemistry. A team of researchers led by a group from the University of Maryland has. Yang et al.
Researchers from the Naval Air Warfare Center Weapons Division (NAWCWD) have developed an efficient three-step process for the conversion of cellulosic feedstocks to both a valuable chemical precursor and high-performance jet fuel blendstock. MCPD can subsequently be converted to tetrahydrodimethyldicyclopentadiene (RJ-4) high-density fuel.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Photocatalytic water splitting has attracted great interest as a means of cost-effective conversion of sustainable solar energy to valuable chemicals. 2021.01.001.
million Advanced Research Projects Agency - Energy (ARPA-E) OPEEN+ grant to develop a method to convert natural gas into carbon nanotubes for materials that can replace metals in large-scale applications. With our new concept, we will convert directly natural gas into materials made of carbon nanotubes.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). Abdalla, T. Nat Biotechnol doi: 10.1038/s41587-021-01195-w.
American Battery Technology Company (ABTC) ( earlier post ) announced results of its third-party Qualified Person (QP)-audited Inferred Resource Report that details the analysis of its lithium deposit at its Tonopah Flats Lithium Project in Nevada. The inferred resources report concludes that Tonopah Flats may hold an estimated 15.8
The production of such alkanes from renewable biomass instead of fossil resources is very attractive and important for sustainable energy and chemical supply. In this context, bio- derived fatty acids are promising candidates, owing to their inherent structural similarities to diesel-type hydrocarbons, inedible nature, abundance and low cost.
A new boron-copper catalyst for the conversion of carbon dioxide (CO 2 ) into chemicals or fuels has been developed by researchers at Ruhr-Universität Bochum and the University of Duisburg-Essen. CO 2 can be converted into larger carbon compounds that can be used as base chemicals for industry or as fuels. —Wolfgang Schuhmann.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. The Rice lab flashed tire-derived carbon black and found about 70% of the material converted to graphene. —Rouzbeh Shahsavari.
Researchers in China have developed a one-pot process for the direct conversion of cellulose to ethanol with a yield of 43.2 Herein, we report the one-pot direct conversion of cellulose to ethanol over a multi-functional catalyst Mo/Pt/WO x (2 —Yang et al. . A paper on their work is published in the journal Joule. Yang et al.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —Dr Wang. Qian Wang et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content