article thumbnail

MIT researchers pursuing increasing human-vehicle collaboration

Green Car Congress

Researchers at MIT are developing systems that could allow humans, robots and other autonomous vehicles to collaborate on everything from navigation to trip planning, and eventually pave the way for the operation of personal aircraft and driverless cars. The technology views the process of collaboration as a diagnostic problem, Williams says.

MIT 253
article thumbnail

Contour Energy Systems Licenses MIT Carbon Nanotube Technology for Li-ion Battery Electrodes

Green Car Congress

has acquired a carbon nanotube technology that can significantly improve the power capability of lithium-ion batteries, through an exclusive technology licensing agreement with Massachusetts Institute of Technology (MIT). —MIT Professor Yang Shao-Horn. Paula Hammond, Bayer Chair Professor of Chemical Engineering at MIT.

Li-ion 257
article thumbnail

MIT team develops first supercapacitor made entirely from neat MOFs, without conductive additives or binders

Green Car Congress

Researchers at MIT have shown that a MOF (metal-organic framework) with high electrical conductivity—Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 )—can serve as the sole electrode material in a supercapacitor. We have a new material to work with, and we haven’t optimized it at all. —Mircea Dincă.

MIT 150
article thumbnail

Researchers from MIT and Sun Catalytix develop an artificial leaf for solar water splitting to produce hydrogen and oxygen

Green Car Congress

Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. manufacturing that is required for inexpensive direct. Reece et al. Click to enlarge.

MIT 278
article thumbnail

MIT team devises approaches for practical carbon-nanotube-coated carbon fiber; stronger, more electrically conductive

Green Car Congress

MIT scientists demonstrated two approaches for growing CNTs on carbon fiber without degrading the fiber strength. Researchers at MIT have demonstrated two approaches for producing carbon fibers coated in carbon nanotubes without degrading the underlying fiber’s strength. Credit: ACS, Steiner et al. Click to enlarge.

article thumbnail

RPI Doctoral Student Develops New Graphene Material with 14% Wt. Hydrogen Storage Capacity

Green Car Congress

Javad Rafiee, a doctoral student in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer Polytechnic Institute, has developed a new graphene material for storing hydrogen at room temperature. Rafiee is the fourth recipient of the Lemelson-MIT Rensselaer Student Prize. Lemelson-MIT Collegiate Student Prizes.

Hydrogen 220
article thumbnail

MIT and Harvard team develop material that stores sun’s heat

Green Car Congress

Researchers from MIT and Harvard University have developed a material that can absorb the sun’s heat and store that energy in chemical form, ready to be released again on demand. In effect, they behave as rechargeable thermal batteries: taking in energy from the sun, storing it indefinitely, and then releasing it on demand.

MIT 306