This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at George Washington University led by Dr. Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). —Johnson et al. —Johnson et al.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. HyperSolar’s research is centered on developing a low-cost and submersible hydrogen production particle that can split water molecules using sunlight, emulating the core functions of photosynthesis. HyperSolar, Inc. V (at 25 °C at pH 0).
A team led by Dr. Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Currently, perovskite instability limits the cell lifetime.)
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-cost water-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. Credit: Gong et al.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.) ORNL began accepting license applications in March 2016.
A team comprising scientists who specialize in structure materials at City University of Hong Kong (CityU) has developed a high-performance electrocatalyst based on an innovative concept originally for developing alloys. Their high costs and scarcity hinder the development and applications of this hydrogen production method.
millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies. —Mao et al.
Researchers at Southwest Research Institute (SwRI) and The University of Texas at San Antonio (UTSA) have determined that biochar, a substance produced from plant matter, is a safe, effective and inexpensive method to treat flowback water following hydraulic fracturing, or fracking. —Zhigang Feng, USTA.
Researchers at The University of Texas at San Antonio (UTSA) and Southwest Research Institute (SwRI) are investing $200,000 in new research to develop a low-cost method to treat flow-back water following hydraulic fracturing. Flow-back water treatment is currently a critical sustainability issue for the oil and gas industry.
Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark have identified a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol at ambient pressure and with fewer side-products than the conventional catalyst. —lead author Felix Studt, SLAC.
LiNa’s senior team has accumulated decades of materials engineering and design for manufacturing experience in the fuel cell industry. The battery is constructed from easily sourced, low-cost materials and does not contain any cobalt or lithium. LiNa Energy was formed in the summer of 2017 as a spin-out of Lancaster University.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbon fiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost. Giner ELX Inc.
—which intends to become a silicon anode materials supplier to the EV industry— entered into a Memorandum of Understanding (MOU) with South Korean silicon powder manufacturer, Korea Metal Silicon Co., He is currently a Professor of Chemical and Biomolecular Engineering at Yonsei University. Korea Metal Silicon Co.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
On a large scale, high-power electronics are used to connect solar panels and wind turbines to the grid, to operate industrial equipment such as elevators and HV/AC systems, and to run electric and hybrid-electric vehicles. High Quality, Low-Cost GaN Single Crystal Substrates for High Power Devices. Fairfield Crystal Technology.
Michigan will enable four new mobility services to help address challenges across the state related to sustainable transit, roadway safety, parking and staffing shortages in the service industry. In partnership with key universities, four companies—Bluecity, GEKOT Inc., Mouvit ($100,000).
Considering recent cost reductions of Si solar cells, this paper offers a path to the construction of lowcost solar-to-fuels devices. —Winkler et al. Watson Research Center) and former MIT graduate student Casandra Cox (now at Harvard).
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. The project aims to reduce the cost of electrolytic hydrogen significantly. million (US$9.7
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. An open-access paper on their work is published in Proceedings of the National Academy of Sciences (PNAS). —Song et al.
Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at lowcost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources. Arizona State University.
to pursue opportunities in large-scale, low-cost and permanent carbon capture and storage (CCS). Through this work, FPX has become an industry leader in advancing the understanding of the controlling chemistry and mineralogy of carbon capture and the sequestration potential of the host serpentinized peridotite rock.
The US Department of Energy (DOE) has begun work on the Grid Storage Launchpad (GSL), a $75-million facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington that will boost clean energy adaptation and accelerate the development and deployment of long-duration, low-cost grid energy storage.
a lowcost, raw materials that do not raise concerns in terms of supply bottlenecks (electrodes that do not include PGMs, stainless steel current collectors), a compact design, the adoption of feeds based on non-corrosive liquids (low concentration alkali or DI water), and differential pressure operation.
The Faraday Battery Challenge is part of the UK government’s Industrial Strategy Challenge Fund (ISCF), overseen by the Department for Business, Energy and Industrial Strategy to help transform the production of batteries for the future of electric vehicles (EVs) in the UK. Next generation lithium ion cathode materials.
While advanced composites are used in selective industries such as aircraft, satellites and cars, these materials remain expensive, require large amounts of energy to manufacture and are difficult to recycle. PolyOne Corporation; PPG Industries, Inc.; PolyOne Corporation; PPG Industries, Inc.; Adherent Technologies, Inc.;
A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process.
A research team at Japan’s National Institute for Materials Science (NIMS) and Nagaoka University of Technology has developed a new high-strength magnesium sheet alloy (Mg–1.1Al–0.3Ca–0.2Mn–0.3Zn) that has excellent room-temperature formability comparable to that of the aluminum sheet metal currently used in body panels of some automobiles.
Bramble Energy , an innovator in fuel cell technology, has joined forces with Equipmake, Aeristech and the University of Bath to develop a new hydrogen double-deck bus integrating Bramble’s low-cost printed circuit board fuel cell (PCBFC) technology. Earlier post.)
Tennessee Technological University. A Solid State Technology Enabled Compact, Modular Design to Reduce DC Fast Charging Cost and Footprint. North Carolina State University. Ultra-lowCost, All-SiC Modular Power Converters for DC Fast Charging Equipment Connected Directly to Medium Voltage Distribution System.
At the same time, fuel cell durability has doubled, expensive platinum content has been reduced by a factor of five, and the cost of fuel cells has already fallen 80% since 2002. Eaton Corporation, Kettering University, Ballard Power Systems, and Electricore, Inc., 3M Company, up to $3.1 Eaton Corporation, up to $2.1
Phinix,LLC; Rare Earth Element Separation Using Gas-Assisted Micro-Flow Extraction with Task-Specific Ionic Liquids Partners: NICHE Industrial Chemicals, Virginia Polytechnic Institute and State University DOE share:$500,000; Cost share $225,000; Total costs: $725,000. 525 Solutions, Inc.;
The projects selected are located in 25 states, with 50% of projects led by universities, 23% by small businesses, 12% by large businesses, 13% by national labs, and 2% by non-profits. University of Massachusetts, Amherst. Development of a Dedicated, High-Value Biofuels Crop The University of Massachusetts, Amherst will develop an.
This program aims to lower the cost of GTL conversion while enabling the use of low-cost, low-carbon, domestically sourced natural gas. If successful, LBNL’s process will enable low-cost, energy-efficient fuel production from natural gas. Northwestern University. Pennsylvania State University.
A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) —Stuart Licht.
A team led by researchers from Sandia National Laboratories and the University of California, Merced has developed an efficient molybdenum disulfide (MoS 2 ) catalyst for driving the hydrogen evolution reaction (HER). The printing process also allows for continued deposition, with the ability to scale for industry, he added.
The US Department of Energy announced $35 million in awards for 12 projects that find new ways to harness medium-voltage electricity for applications in industry, transportation, on the grid and beyond. BREAKERS projects include: Drexel University, Ultra-Efficient Intelligent MVDC Hybrid Circuit Breaker – $4,413,913.
Electrochaea employs a patented biocatalyst (BioCat) to convert low-cost and stranded electricity and CO 2 into pipeline-grade renewable gas. The core of the power-to-gas (P2G) technology is the proprietary biocatalyst that can be deployed in a simple and cost-effective energy conversion system.
ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. NETL and hundreds of technology developers from industry and academia are working together to meet the challenge of devising low-cost, efficient CO 2 capture technologies for new and existing pulverized coal power plants.
Hilton and Tesla have announced an agreement to install up to 20,000 Tesla Universal Wall Connectors at 2,000 hotels in the US, Canada, and Mexico. Tesla’s Universal Wall Connector , which was launched last month, has received praise from the electric vehicle community. Don’t hesitate to contact us with news tips.
The US Department of Energy (DOE) has selected 7 projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for central power generation from fossil energy resources for further research. Boston University. Stanford University. University of Wisconsin, Madison. West Virginia University.
million in a Series A funding round co-led by Breakthrough Energy Ventures and Eni Next, with participation from Mitsubishi Heavy Industries (MHI) and AP Ventures. C-Zero Inc., a pioneer in natural gas decarbonization, recently raised $11.5 Background. cal/mol H 2 ) is slightly (.
Twenty-three of the projects receiving funding are headed by universities, eight are led by the Energy Department’s National Laboratories and one project is run by a non-profit organization. University of California, Berkeley. University of California, Riverside. Northwestern University. Purdue University.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content