Remove Cost Of Remove Low Cost Remove Solar Remove Water
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis.

Low Cost 397
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. This lowers the system cost of what is essentially an electrolysis process.

Low Cost 246
article thumbnail

EPFL team develops low-cost catalyst for splitting CO2

Green Car Congress

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. A solar-driven system set up using this catalyst was able to split CO 2 with an efficiency of 13.4%. 2017.87.

Low Cost 150
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.

Houston 268
article thumbnail

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

Green Car Congress

This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity. The process is constrained by the (low) cost of electricity. Larger scale C2CNT can be achieved through direct elimination of atmospheric CO 2 using solar heat and solar to electric PVs. —Johnson et al.

Low Cost 300
article thumbnail

ARPA-E announces $11M for innovations in energy-water processing and agricultural sensing technologies; fourth, fifth OPEN+ cohorts

Green Car Congress

The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced $11 million in funding for 7 projects in the fourth and fifth cohorts of the agency’s OPEN+ program: Energy-Water Technologies and Sensors for Bioenergy and Agriculture. Energy-Water Technologies cohort.

Water 170
article thumbnail

Sandia team boosts hydrogen production activity by molybdenum disulfide four-fold; low-cost catalyst for solar-driven water splitting

Green Car Congress

The improved catalyst has already released four times the amount of hydrogen ever produced by MoS 2 from water. Nevertheless, because of the scarcity and cost of Pt, a more abundant alternative is needed for cost-effective implementation. Water splitting is a challenging reaction. Then you can restart it with acid.

Low Cost 150