Remove Conversion Remove Hydrogen Remove Polymer Remove Universal
article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. CO 2 (black and red) and hydrogen molecules (blue) react with the help of a ruthenium-based catalyst. Image credit: Chih-Jung Chen). —Zhou et al.

article thumbnail

UW-Madison team develops novel hydrogen-producing photoelectrochemical cell using solar-driven biomass conversion as anode reaction

Green Car Congress

Researchers at the University of Wisconsin-Madison have developed an innovative hydrogen-producing photoelectrochemical cell (PEC), using solar-driven biomass conversion as the anode reaction. Most of the earlier work exploring the conversion of HMF into FDCA utilized aerobic oxidation using heterogeneous catalysts.

article thumbnail

LLNL 3-D printed biocatalytic polymer turns methane to methanol at room temperature and pressure

Green Car Congress

Methane monooxygenases (MMOs), found in methanotrophic bacteria, are selective catalysts for methane activation and conversion to methanol under mild conditions; however, these enzymes are not amenable to standard enzyme immobilization approaches. The enzymes retain up to 100% activity in the polymer construct. Blanchette et al.

Polymer 150
article thumbnail

Twelve produces first batch of E-Jet fuel from CO2 electrolysis; partnership with USAF; electrifying fuel, not planes

Green Car Congress

Twelve’s jet fuel, produced using its carbon transformation technology in partnership with Fischer-Tropsch conversion experts Emerging Fuels Technology ( earlier post ), is a fossil-free fuel that offers a drop-in replacement for petrochemical-based alternatives without any changes to existing plane design or commercial regulations.

Fuel 339
article thumbnail

UT Arlington researchers use polyaniline to split CO2 into alcohols

Green Car Congress

Researchers at The University of Texas at Arlington have been the first to demonstrate that polyaniline (PANI), a member of the organic conducting polymer family, is a promising photocathode material for the conversion of carbon dioxide into alcohol fuels without the need for a co-catalyst.

Arlington 199
article thumbnail

ORNL researchers developing biohybrid photoconversion system to convert visible light into hydrogen

Green Car Congress

Neutron scattering analysis performed at ORNL shows the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers. This finding could be exploited for the introduction of self-repair mechanisms in future solar conversion systems.

Light 199
article thumbnail

Researchers use multifunctional co-solvent pair to uncover molecular principles of biomass breakdown for conversion to transportation fuels

Green Car Congress

Plant cell walls resist chemical or biological degradation, making the breakdown of lignocellulosic biomass into renewable chemical precursors for conversion into chemicals and transportation fuels challenging and costly. As a result, economically viable methods of transforming biomass into biofuels have yet to be realized.