article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

Researchers at the University of Texas at Austin, including Prof. With the Li-glass and Na-glass electrolytes, we have demonstrated in this paper one possible new strategy in which the cathode consists of plating the anode alkali-metal on a copper-carbon cathode current collector at a voltage V > 3.0

Low Cost 150
article thumbnail

This Rice University Professor Developed Cancer-Detection Technology

Cars That Think

Richards-Kortum is a professor of bioengineering at Rice University , in Houston, and codirector of the Rice360 Institute for Global Health Technologies , which is developing affordable medical equipment for underresourced hospitals. in 1990, she joined the University of Texas at Austin as a professor of biomedical engineering.

Universal 131
article thumbnail

New cobalt-free high-voltage spinel cathode material with high areal capacity

Green Car Congress

Researchers from the University of California San Diego (UCSD) and the University of Texas at Austin, with colleagues at the US Army Research Laboratory and Lawrence Berkeley National Laboratory, have developed a thick cobalt-free high voltage spinel (LiNi 0.5 O 4 (LNMO)) cathode material with high areal capacity. Resources.

Ni-Li 307
article thumbnail

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.

Sodium 150
article thumbnail

DOE announces Stage 1 CABLE Conductor Manufacturing Prize Winners

Green Car Congress

The Clean Carbon Conductors team, with members from Rice University and DexMat Co, is designing enhanced-conductivity CNTs by improving fiber quality, alignment, packing density, and by electrochemically doping the CNTs. Each winning team has earned a $25,000 cash prize and a stipend for third-party conductivity testing in Stage 2.

article thumbnail

UT Austin team develops new family of high-capacity anode materials: Interdigitated Eutectic Alloys

Green Car Congress

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a new family of anode materials that can double the charge capacity of lithium-ion battery anodes. It is a simple, low-cost approach that can be applied to a broad range of alloy systems with various working ions such as Li, Na, or Mg.

Austin 150
article thumbnail

UT Austin team uses polypyrrole-MnO2 coaxial nanotubes as sulfur host to improve performance of Li?sulfur battery

Green Car Congress

Researchers at the University of Texas at Austin have developed a novel electrode for lithium-sulfur batteries that improves cyclic stability and rate capability significantly. In a paper published in the ACS journal Nano Letters , they report using polypyrrole-MnO 2 coaxial nanotubes to encapsulate sulfur.

Austin 150