Remove Low Cost Remove Universal Remove Water
article thumbnail

Travel and Tariffs: How Hotels, Airlines, Cruise Lines and Travelers are Faring

Baua Electric

dollar, said Michael Melvin, the executive director of the master of quantitative finance program at the University of California San Diego. But retaliatory tariffs from other countries could neutralize the effect on the dollar, according to the Budget Lab at Yale University, a nonpartisan policy research center.

article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study.

El Paso 459
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

Researchers at the University of Exeter (UK) have developed a novel p-type LaFeO 3 photoelectrode using an inexpensive and scalable spray pyrolysis method. The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability.

Water 342
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. —Song et al. Song et al.

Water 459
article thumbnail

Bio-inspired molybdenum sulfide catalyst offers low-cost and efficient photo-electrochemical water splitting to produce hydrogen

Green Car Congress

The optimized photo-electrochemical water splitting device uses light absorbers made of silicon arranged in closely packed pillars, dotted with tiny clusters of the new molybdenum sulfide catalyst. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark. Image courtesy of Christian D. Click to enlarge.

Water 332
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5

Low Cost 278
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. HyperSolar, Inc. announced that it had reached 1.25 V (at 25 °C at pH 0). Click to enlarge.

Low Cost 246