article thumbnail

Oil sands company Suncor Energy strengthens its focus on hydrogen and renewable fuels, divesting wind and solar

Green Car Congress

Suncor Energy, a Canadian integrated energy company that is one of the top oil sands producers in the country, will strengthen its focus on hydrogen and renewable fuels to accelerate progress towards its objective to be a net-zero company by 2050. Suncor also plans to divest its wind and solar assets.

Oil-Sands 225
article thumbnail

U Calgary study finds oil shale most energy intensive upgraded fuel followed by in-situ-produced bitumen from oil sands

Green Car Congress

A team at the University of Calgary (Canada) has compared the energy intensities and lifecycle GHG emissions of unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas. Earlier post.). —Nduagu & Gates.

Oil-Sands 150
article thumbnail

Oil sands GHG lifecycle study using operating data finds lower emitting oil sands cases outperform higher emitting conventional crude cases; a call for more sophisticated tools and reporting

Green Car Congress

Well-to-wheel (WTW) greenhouse gas emissions for in situ SAGD and surface mining pathways generated employing GHOST/TIAX/ GHGenius combination and comparison with SAGD, mining and conventional crude oil literature pathways (all results are on a HHV basis). fuel combustion) comprises 64?74% Credit: ACS, Bergerson et al.

Oil-Sands 287
article thumbnail

Average carbon intensity of oil sands production has dropped ~36% in last 40 years; still 12-24% higher than conventional oil CI

Green Car Congress

The carbon intensity (CI) of Alberta oil sands production has significantly decreased over the last 40 years, according to a new study by a team from Stanford University published as an open access paper in the journal Environmental Research Letters. Trends in well-to-wheel pathway-specific CI. Click to enlarge.

Oil-Sands 210
article thumbnail

Researcher urges more effort on assessment of land and water impacts of oil sands production; reference point for other unconventional fuels

Green Car Congress

Bitumen production from the Canadian oil sands provides a point of reference that could be used to observe and better manage the land and water impacts of a rapid transition to unconventional fuels, suggests Dr. Sarah Jordaan of the Energy Technology Innovation Policy Research Group, Department of Earth and Planetary Sciences, Harvard University.

Oil-Sands 231
article thumbnail

Understanding the variability of GHG life cycle studies of oil sands production

Green Car Congress

Full-fuel-cycle GHG emissions estimates for reformulated gasoline pathways by LCA study. He found that the variation in oil sands GHG estimates is due to a variety of causes. These include oil sands, enhanced oil recovery, coal-to-liquids and gas-to-liquids synthetic fuels, and oil shale.

Oil-Sands 225
article thumbnail

New lifecycle analysis of WTW GHG emissions of diesel and gasoline refined in US from Canadian oil sands crude

Green Car Congress

In a new, comprehensive study, a team from Argonne National Laboratory, Stanford University and UC Davis ITS has estimated the well-to-wheels (WTW) GHG emissions of US production of gasoline and diesel sourced from Canadian oil sands. g CO 2 e/MJ for US conventional crude oil recovery. This range can be compared to ∼4.4

Oil-Sands 150