This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In a paper in Nature , they suggest that the use of such redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). A combination of falling costs for solar and wind power, improved performance as well as economies of scale for electrolyzers could make it possible.
The Gigastack project, led by ITM Power, Ørsted, Phillips 66 Limited and Element Energy, will show how renewable hydrogen derived from offshore wind can support the UK’s 2050 net-zero greenhouse gas emission target. from an offshore wind farm—the process of producing hydrogen from water (electrolysis) can be decarbonized.
Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at lowcost are required. Cost is a greater concern. —Colin Wessells.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. HyperSolar’s research is centered on developing a low-cost and submersible hydrogen production particle that can split water molecules using sunlight, emulating the core functions of photosynthesis. HyperSolar, Inc. V (at 25 °C at pH 0).
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
However, managed EV adoption can reduce the cost of achieving GHG reductions through a RES, they concluded in their paper published in the ACS journal Environmental Science & Technology. The controlled charging of EVs can reduce electricity costs and improve the integration of wind energy. —Choi et al.
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewable hydrogen over long distances could be cost-effective. This finding is important because access to sufficient amounts of renewable hydrogen at lowcost is essential for achieving a climate neutral Europe by 2050.
Vehicle technologies span a range from new Si/graphene Li-ion anode materials and composites for motor windings to diesel aftertreatment and advanced lubricants. By the end of Phase II, Mainstream plans to demonstrate a production-ready prototype that exceeds DOE targets for fuel economy, operating range, and cost. Lead organization.
million in funding from Sustainable Development Technology Canada’s (SDTC) SD Tech Fund, through the ecoENERGY Innovation Initiative, to develop low-cost wheel motors for electric and hybrid vehicles. TM4, a wholly owned subsidiary of Hydro-Québec, is receiving $3.7 Electric (Battery) Hybrids Motors'
It can reduce both carbon and local emissions, increase energy security and strengthen the economy, as well as support the deployment of renewable power generation such as wind, solar, nuclear and hydro. Demand potential across sectors, base and ambitious cases. Road Map to a US Hydrogen Economy ”. million jobs by 2050.
A new Energy Department study conducted by the National Renewable Energy Laboratory (NREL) indicates that by 2025 wind and solar power electricity generation could become cost-competitive without federal subsidies, if new renewable energy development occurs in the most productive locations. mmBtu and $8.43/mmBtu. mmBtu and $8.43/mmBtu.
The Dolphyn project showcases a floating semi-submersible design with an integrated wind turbine, PEM electrolysis and desalination facilities. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. The project aims to reduce the cost of electrolytic hydrogen significantly.
In addition, the international research and development team is working on the low-cost iron-salt battery, the properties of which make it particularly suitable for ensuring base load capability for wind and solar farms. Vanadium redox flow battery cell. The cells of a vanadium redox flow battery each consist of two half cells.
A new €4-million research project funded by the EU is seeking to develop a lower-cost, more efficient and power-dense permanent magnet eMotor for electric vehicles (EVs). The consortium of eight European partners in the HEFT project is led by Mondragan University and includes GKN Automotive.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. Earlier post.) The plant will begin operation this month.
AW-Energy says that its wave energy device, when combined with other renewable energy sources, can enable significant green hydrogen cost reductions and is a viable solution in the drive to execute the world’s clean energy hydrogen roadmap. Wave energy holds the greatest potential to generate constant low-cost green hydrogen.
Carbon Clean, a developer of low-cost carbon capture technology, has entered into an agreement with power-to-fuels developer Liquid Wind. Within the Liquid Wind facility, the CO 2 will then be combined with renewable hydrogen to form the carbon-neutral liquid fuel, eMethanol.
The devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture.The researchers used 3D printing to fabricate prototype electrolyzers that they demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover.
The Haru Oni project takes advantage of the perfect climatic conditions for wind energy in Magallanes province in southern Chile to produce the virtually CO?-neutral neutral fuel using low-cost green wind power. In the first step, electrolyzers split water into oxygen and green hydrogen using wind power.
These devices are critical to infrastructure because all electronics—from laptops to electric motors—rely on them to control or converted electrical energy from a high voltage to low a voltage in order to properly operate. High Quality, Low-Cost GaN Single Crystal Substrates for High Power Devices.
Grid access and capacity issues, as well as the infeasibility of on-site solar and wind, is a barrier for EV charging in many locations. Low-cost ceramics enable temperatures beyond the limitations of metals to deliver fuel efficiencies of power plants in small-scale distributed power.
Deep declines in wind, solar and battery technology costs will result in a grid nearly half-powered by the two fast-growing renewable energy sources by 2050, according to the latest projections from BloombergNEF (BNEF). Each year, NEO compares the costs of competing energy technologies through a levelized cost of energy analysis.
This material, together with the low-cost catalysts and injection moulded components developed, offer a prototype stack costing 43% of its PEM counterpart. The HydroGEN project focused on the realization of electrolyzer cost reduction through advances in materials technology and system simplification.
Over time, it has improved the efficiency and aggressively reduced the cost of its products and expects this trend to continue. Generating low-cost hydrogen from intermittent renewables is a sine qua non for decarbonization. Generating low-cost hydrogen from intermittent renewables is a sine qua non for decarbonization.
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades.
In partnership with the Illinois Institute of Technology and University of Wisconsin-Madison, Magna is applying its powertrain, electronics and full-vehicle expertise to deliver an automotive-grade, non-permanent magnet, high-performance electric motor that aims to achieve increased power density and reduced cost compared to current e-motors.
The Yokeless And Segmented Armature (YASA) topology is a type of axial flux motor that has no stator yoke, a high fill factor and short end windings which all increase torque density and efficiency of the machine. The topology is based around a series of magnetically separated segments that form the stator of the machine.
High current density achieved by a CORC cable based on a four-layer model coil recently tested at National High Magnetic Field Laboratory (NHMFL) motivated its consideration for lowcost, reduced size fusion magnet application. While simplifying construction, the technique also lowers costs. A lot depends on the center.
This system will be installed in the Eurus Tashirotai Wind Farm by Toyota Tsusho Corporation and Eurus Energy Holdings Corporation, and the four companies will begin a collaborative verification project around fall of this year.
John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.
High wind speeds in Namibia mean that the generation of wind power is particularly profitable. We therefore think that one kilogram of hydrogen from Namibia will eventually cost between €1.50 This estimate underlines that we need large amounts of hydrogen and we need it quickly and at lowcost.
The new battery design could help ease integration of renewable energy into the electrical grid at lower cost, using Earth-abundant metals, according to a study just published in Energy Storage Materials. h is achieved with an estimated raw active materials cost of $7.02 The team previously reported a neutral molten salt reaction.
24M’s SemiSolid platform technology provides opportunities for the production of cost-optimized, application-specific designs in both grid and electric mobility markets. 24M’s SemiSolid platform technology provides opportunities for the production of cost-optimized, application-specific designs in both grid and electric mobility markets.
The Topsoe SOEC electrolyzer is a compact stack built primarily from abundant, low-cost ceramic materials enclosed within a metal housing. Construction is scheduled to begin in the second half of this year, subject to Board and other regulatory approvals.
Improved energy storage technologies will allow for expanded integration of renewable energy resources like wind and photovoltaic systems and will improve frequency regulation and peak energy management. DOE funding $75,161,246, total project value with cost share $150,322,492). Los Angeles Department of Water and Power.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
million: ALD Technical Solutions is developing light-weight, easy-to-install, long-lasting, and cost-effective structural composite reinforcement system which will be installed and cured-in-place around existing Aluminum Conductor Steel Reinforced transmission lines to increase power capacity and power efficiency, and also decrease sag.
High Performance, LowCost Superconducting Wires and Coils. for High Power Wind Generators The University of Houston will develop a new, low-cost. superconducting wire that can be used in future advanced wind turbine generators. has traditionally been too expensive to use in wind generators.
The Enedym team has developed a disruptive way to design electric motors at a fraction of the time and cost of existing methods. In a switched reluctance motor, torque is produced by the magnetic attraction of a steel rotor to stator electromagnets; there are no permanent magnets, and the rotor carries no windings. Earlier post.).
Such systems can be used to match the intermittent production of power from irregular sources, such as wind and solar power, with variations in demand. Apart from the fact that this finding puts us on a desirable cost trajectory, this approach may well be more broadly applicable to other battery chemistries.
Unlike the electrode materials found in most lithium-ion batteries, Prussian blue enjoys a widespread availability and lowcost that make batteries based on Prussian blue electrodes an economically attractive, environmentally friendly technology. However, there are high electricity delivery costs for high power fast-charging stations.
It is, however, a challenge that is being made all the greater as we continue to decentralize power generation with more distributed, variable and inflexible sources, such as wind and solar. Increasingly, wind and solar are replacing fossil fuels as our principle source of energy. 100% wind and solar is not feasible on its own.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content