This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green Hydrogen Cost Reduction: scaling up electrolyzers to meet the 1.5
The California Energy Commission (CEC) adopted a report establishing offshore wind goals and moving the state one step closer to development of the clean energy resource off California’s coast. Additional transmission infrastructure will be needed to deliver offshore wind energy from this region to the grid.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
Renewable energy sources are central to the energy transition toward a more sustainable future. However, because sunshine and wind are inherently variable and inconsistent, finding ways to store energy in an accessible and efficient way is crucial.
In a new study published in the journal Applied Energy , Carnegie Mellon University (CMU) researchers found that controlled charging of plug-in hybrid electric vehicles (PHEVs) reduces the costs of integrating the vehicles into an electricity system by 54–73% depending on the scenario. —Weis et al.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
a provider of long duration energy storage solutions, and Encore Renewable Energy, a developer of renewable energy generation and storage projects, jointly announced plans to develop the United States’ first long-duration, liquid-air energy storage system. Highview Power Storage, Inc.,
The average cost of a Li-ion battery cell—used to power electric vehicles and to provide flexibility in the power grid as more renewables, such as solar and wind, are added will fall below $100 per kilowatt hour (kWh) in the next three years, according to a new analysis by IHS Markit.
a United Kingdom-based hybrid clean energy company, is developing a wind-SMR (Small Modular Reactor) and hydrogen production hybrid energy project in North Wales. As international renewable energy portfolios grow, this collaboration highlights the increasing momentum and need for more flexible and reliable low-carbon energy generation.
The Front-Loading Net Zero report states that electricity production costs could be reduced by up to 50% by 2050 if countries and states adopt 100% renewable systems faster than currently planned. Utilities should keep repeating steps 1 - 3 until their systems run on 80 – 90% renewables.
The cost of new-build onshore wind has risen 7% year on year, and fixed-axis solar has jumped 14%, according to the latest analysis by research company BloombergNEF (BNEF). The global benchmark levelized cost of electricity, or LCOE, has retreated to where it was in 2019. The latter cost at $74 and $81 per MWh, respectively.
One path to achieving this is with renewable synthetic fuels (e-fuels). Bosch outlines seven reasons why renewable synthetic fuels should be part of tomorrow’s mobility mix: Time. Renewable synthetic fuels have long since left the basic research phase. emitted by burning renewable synthetic fuels is reused to produce new fuels.
Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. The key to this Ocean Renewable Energy Storage (ORES) system is the placement of 30-meter-diameter hollow concrete spheres on the seafloor under the wind turbines. Earlier post.).
A new Energy Department study conducted by the National Renewable Energy Laboratory (NREL) indicates that by 2025 wind and solar power electricity generation could become cost-competitive without federal subsidies, if new renewable energy development occurs in the most productive locations. mmBtu and $8.43/mmBtu.
TCDB plot of projected total cost of battery-electric vehicles to manufacturers. The US Department of Energy (DOE) has released a new public database featuring cost and performance estimates for electric generation, advanced vehicle, and renewable fuel technologies. Click to enlarge. Click to enlarge.
Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. The Stanford study considered a future US grid where up to 80% of the electricity comes from renewables. Click to enlarge. A new study by Charles J.
The least expensive way for the Western US to reduce greenhouse gas emissions enough to help prevent the worst consequences of global warming is to replace coal with renewable and other sources of energy that may include nuclear power, according to a new study by University of California, Berkeley, researchers. —Daniel Kammen.
The Dolphyn project showcases a floating semi-submersible design with an integrated wind turbine, PEM electrolysis and desalination facilities. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. The project aims to reduce the cost of electrolytic hydrogen significantly.
The US Department of Energy’s (DOE) Wind Energy Technologies Office (WETO) and Office of Electricity (OE) plan to fund (DE-FOA-0003241) research to drive innovation and reduce costs of high-voltage direct current (HVDC) voltage source converter (VSC) transmission systems.
Comparative levelized cost of electricity in 2025 ($/MWh) at different CO 2 prices. For the report, central-station generation refers to >100 MW, with the exception of some renewable-resource-based technologies. Representative costs are reported in constant December 2010 US dollars. Source: EPRI. Click to enlarge.
2010 and 2015 LCOE ranges for solar and wind technologies. The cost of producing electricity from renewable sources such as wind and solar has been falling for several years. Bottom: LCOE ranges for solar PV and wind technologies at three discount rates. Source: IEA/NEA. Click to enlarge. Source: IEA/NEA.
While the country is one of the world’s largest producers of wind and solar renewable energy, it faces the issue of renewable energy being weather-dependent and prone to fluctuation. The uses of green methanol for commercial shipping have already been pioneered by Danish shipping giant Maersk.
One of the new virtual power plants enables the Munich municipal utility company to run six of its cogeneration modules, five hydroelectric facilities, and one wind-power plant more efficiently and economically than if they were operated separately. Virtual power plants are ideally suited for renewable sources of energy, Siemens says.
The arrival of cheap battery storage will mean that it becomes increasingly possible to finesse the delivery of electricity from wind and solar, so that these technologies can help meet demand even when the wind isn’t blowing and the sun isn’t shining. trillion of that going to wind and solar and a further $1.5 BNEF sees $1.3
Traditional methods of producing hydrogen without greenhouse gas emissions (green hydrogen) include electrolysis powered by renewable sources such as wind, solar, or hydro. According to a report from S&P Global Commodity Insights, the cost of electrolytic hydrogen from renewable energy spiked as high as $16.80/kg
Deep declines in wind, solar and battery technology costs will result in a grid nearly half-powered by the two fast-growing renewable energy sources by 2050, according to the latest projections from BloombergNEF (BNEF). Wind and solar grow from 7% of generation today to 48% by 2050. Global power generation mix.
The technology could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and sun far more economical and reliable. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output.
The analysis updates EPRI’s 2004 EPRI assessment, which estimated the cost of implementing a smart grid at $165 billion. Mark McGranaghan, EPRI vice president of Power Delivery and Utilization, says the increased costs of the current analysis reflect a more advanced and expansive vision for the smart grid.
Production costs per barrel of oil equivalent. The cost of electrofuels—fuels produced by catalyst-based systems for light capture, water electrolysis, and catalytic conversion of carbon dioxide and hydrogen to liquid fuels—remains far away from viable, according to a new analysis by Lux Research. Source: Lux Research.
Between now and 2020, wind and solar generation will quadruple within the ISO transmission grid at the same time electric vehicle charging increases significantly. With these factors in mind, the ISO developed a new long range planning vehicle titled Reliable Power for a Renewable Future. and reliable electricity.
Honda is conducting independent research on all-solid-state batteries in order to increase the capacity and lower the cost of the next generation batteries for its electrified vehicles. Renewable Energy Efforts in North America.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom is capitalizing on this technology by taking terrestrial renewable power and producing hydrogen using solid oxide electrolyzers.
On December 16, 2010 the US DOE Energy Information Agency (EIA) published a report projecting that renewable energy will still only constitute 12 percent of the USA’s energy sources by 2035. In France, renewable energy consumption will be 20 percent by 2020. EIA projections of renewables penetration. Source: EIA.
Ranges of global technical potentials of renewable energy sources derived from studies analyzed in SRREN report. The authors reviewed more than 160 existing scientific scenarios on the possible penetration of renewables by 2050, alongside environmental and social implications; and then reviewed with four of these in-depth.
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewable hydrogen over long distances could be cost-effective. The most cost effective way to deliver renewable hydrogen depends on distance, amount, final use, and whether there is infrastructure already available.
As the world contends with a global energy crisis, nuclear power has the potential to play a significant role in helping countries to securely transition to energy systems dominated by renewables, according to a new special report by the IEA.
For example, this means a system where the electricity that fuels Europe’s cars could come from rooftop solar panels, while buildings are kept warm with heat from a nearby factory, and the factory is fueled by clean hydrogen produced from off-shore wind energy. The strategy sets out 38 actions to create a more integrated energy system.
This year has brought a significant shift in the generating cost comparison between renewable energy and fossil fuels, according to detailed analysis by technology and region, published this week by Bloomberg New Energy Finance. —Seb Henbest, head of Europe, Middle East and Africa at BNEF.
The objective of the Hydrogen Production sub-program is to reduce the cost of hydrogen dispensed at the pump to a cost that is competitive on a cents-per-mile basis with competing vehicle technologies. Based on current analysis, this translates to a hydrogen threshold cost of. Source: DOE. Click to enlarge.
Even if you have 100 percent capture from the capture equipment, it is still worse, from a social cost perspective, than replacing a coal or gas plant with a wind farm because carbon capture never reduces air pollution and always has a capture equipment cost. Only when wind replaced coal itself did social costs decrease.
The removal of precious metal catalysts has long been understood to be key to achieving a step-change in the cost of electrolysis, and therefore hydrogen production. ITM Power will provide hydrogen energy storage and clean fuel technologies for integration into the renewable energy smart grid system being developed on the Isle of Wight.
Within that total, DOE’s Office of Energy and Efficiency and Renewable Energy (EERE) will award $57.6 Low Total Cost of Hydrogen by Exploiting Offshore Wind and PEM Electrolysis Synergies. This project will directly couple and evaluate the use of an electrolyzer stack with an offshore wind turbine for hydrogen production.
As states take the lead in confronting climate change, a flagship policy is often Renewable Portfolio Standards (RPS). RPS programs, which require that a certain percentage of the state’s electricity come from renewable sources, currently cover 64 percent of the electricity sold in the United States.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content