This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In August 2020, Phillips 66 announced that it planned to reconfigure its San Francisco Refinery in Rodeo, California, to produce renewable fuels. In April, the company completed the diesel hydrotreater conversion, which will ramp up to 8,000 bbl/d (120 million gallons per year) of renewable diesel production by the third quarter of 2021.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. This conversion occurs with a reaction time of less than one minute. Full conversion is the most efficient use of the feedstock possible and exceeds earlier projections. Blue Biofuels, Inc.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. Operation of this technology under dynamic conditions will be confirmed during a year-long test.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels.
0002823 ) to support the extraction and conversion of lithium from geothermal brines to use in batteries for stationary storage and electric vehicles. This funding opportunity will support technologies to extract battery-grade lithium from geothermal brines directly—providing a cost-effective, domestic source of this critical material.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. Additional funding was provided by ORNL’s Technology Innovation Program.
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair.
has selected Axens Vegan Renewable Hydroprocessing technology for its “Carbon Zero 1” production plant in Riverbank, California. Axens Vegan technology is designed to hydrotreat a wide range of lipids and to produce a flexible slate of low-density and high cetane renewable diesel as well as renewable jet fuel.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
Researchers at the University of Turku in Finland have developed a thin-layer artificial biofilm technology for sustainable and long-term ethylene photoproduction. The team optimized the production system by varying different parameters, such as radiance, inorganic carbon level, and periodicity of medium renewal.
Libertine FPE, the creator of Smart Engine control technology for free piston engine (FPE) generators, has secured £2.6 Libertine says that free-piston range-extender engines can offer the efficiency of fuel cells, the durability of conventional engines and achieve carbon reductions using renewable fuels. million (US$3.6
The implementation of dual-fuel methanol engines focuses on new tugs as well as conversions of existing Cat-powered tugs, which comprise the majority of Svitzer’s fleet. The support Caterpillar provides in finding ways of converting our equipment to methanol usage plays a key role in this.
Specialty chemical company Clariant and Eta Bio, a company of the Pavlovi family, running a leading business in the agricultural sector in Bulgaria, have signed a license agreement for Clariant’s sunliquid cellulosic ethanol technology. The agreement marks the fourth signed license deal for Clariant’s sunliquid technology.
In a commentary in the journal Joule , published in January, McGinnis outlined the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels. Aqueous CO 2 electrolysis with base-metal catalysts. to C 2 fuel products such as ethanol. 2020.01.002.
HF Sinclair selected Topsoe as a technology provider for the production of renewable fuels at three facilities: Sinclair, Wyoming; Cheyenne, Wyoming; and Artesia, New Mexico. All three facilities have now successfully been put into operation and deliver renewable diesel into the United States transportation market.
Electro-Active Technologies has exclusively licensed two biorefinery technologies invented and patented by the startup’s co-founders while working at the Department of Energy’s Oak Ridge National Laboratory. The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel.
The project seeks to develop and commercialize the next generation of domestically manufactured DC Fast Charging (DCFC) technology in support of the federal government’s clean energy and climate priorities. —Ezana Mekonnen, Chief Technology Officer at Imagen.
The US Department of Energy (DOE) is awarding a total of $125 million to support 110 clean energy technology projects (DE-FOA-0002381). Within that total, DOE’s Office of Energy and Efficiency and Renewable Energy (EERE) will award $57.6 Conversion of Biogas to Liquid Fuels on Superior Catalysts. million); Fossil Energy (US$14.7
There are two challenges that hinder current conversion techniques from wider adoption: low olefin yield and high production costs. Also, recent approaches to conversion require additional hydrogen, another cost burden. kPa H 2 ), forming butadiene as the primary product (60% selectivity at an 87% conversion). …
The partners aim to replace coal-fired power plants with hydrogen-ready gas-fired power plants in Germany, and to build production of low carbon and renewable hydrogen in Norway that will be exported through pipeline to Germany. Blue hydrogen in large quantities can make a start, with subsequent conversion into green hydrogen supply.
These opportunities could drive the production of valuable fuels, chemicals, and products, provide greater cost savings, increase grid flexibility, and enhance environmental performance across a range of DOE-funded technologies. HES can also be configured to provide various electric and nonelectric products (e.g.,
Chan School of Public Health, and consulted by dozens of experts in academia, updates ethanol’s carbon intensity score to reflect how continuous improvements in technology and practices have driven further emissions reductions in the lifecycle of ethanol and will lead to net zero renewable fuel in the future. gCO 2 e/MJ (range of 37.6
Neste, the leading provider of renewable diesel and sustainable aviation fuel, and an expert in delivering drop-in renewable chemical solutions, has acquired a minority stake in Sunfire GmbH , a developer of high-temperature electrolysis technology. The key technology in the Power-to-X platform is electrolysis.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. These companies are world experts in gasification, gas clean-up, and conversiontechnologies. A biomass power plant in Stockton, California, was the host site for the engineering design effort.
While the country is one of the world’s largest producers of wind and solar renewable energy, it faces the issue of renewable energy being weather-dependent and prone to fluctuation. Geely Holding has been developing methanol vehicles and green methanol technologies for more than 17 years.
The decarbonization of the transportation sector will require large volumes of renewable fuels. So far, renewable diesel and jet fuels are mainly derived from plant oils, but the EU Renewable Energy Directive limits the use of biofuel from food and feed crops since they do not meet sustainability requirements when produced at large scale.
Anelise Lara, the head of Petrobras’ refining, announced that the company is ready to begin production of renewable diesel from soy or other edible oils at commercial scale. Petrobras recently successfully concluded tests on an industrial scale for the production of renewable diesel.
Hyzon Motors, a leading supplier of heavy-duty hydrogen-powered fuel cell electric vehicles, announced a non-binding memorandum of understanding (MoU) with Transform Materials, a provider of renewable hydrogen through its proprietary microwave reactor technology ( earlier post ). —Parker Meeks, Hyzon’s Chief Strategy Officer.
C, which sets it apart from standard electrolysis technologies. Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures. The facility is expected to be operational by 2023. —Hauch et al.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DE-FOA-0002481 ). building HVAC exhaust) and from natural fluids (e.g.,
The NSF grant will address challenges that remain before the renewable strategy can be applied practically on a commercial scale. Koch School of Chemical Engineering Practice at the Massachusetts Institute of Technology; and Yuanyue Liu, an assistant professor of mechanical engineering at the University of Texas at Austin.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Conversion into liquid fuels would be advantageous because they have high energy density and are safe to store and transport. These could then be burned as needed. Credit: Angewandte Chemie.
Production of renewable diesel bioblendstocks through reductive etherification of alcohols and ketones. The first-of-its-kind continuous catalytic process was designed to reduce production costs relative to batch chemistry, the prior state-of-the-art technology. Hafenstine et al. —Derek Vardon, an NREL researcher and co-author.
SK Corp, the holding company of SK Group, has made a strategic investment in Monolith , a US company that has developed a plasma-based process to produce “cyan” hydrogen—between green (via electrolysis using renewable energy) and blue (conversion of methane accompanied by CO 2 capture and storage). Earlier post.).
(TEPCO HD) and Toyota Motor Corporation (Toyota) have developed a stationary storage battery system (1 MW output, 3 MWh capacity) that combines TEPCO’s operating technology and safety standards for stationary storage batteries and Toyota’s system technology for electrified vehicle storage batteries.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. PNNL chemist David Heldebrant, who leads the research team behind the new technology, compares the system to recycling. This technology is available for licensing. —Kothandaraman et al.
As a result, there is a critical need to create new pathways for biofuel conversion that reduces carbon waste, prevents the loss of CO 2 emissions, and in turn, maximizes the amount of renewable fuel a conversion process yields. National Renewable Energy Laboratory. The awardees are: LanzaTech, Inc. Stanford University.
ExxonMobil has developed a unique process technology to enable the manufacture of sustainable aviation fuel (SAF) from renewable methanol. This expands upon ExxonMobil’s suite of technology solutions that are engineered to manufacture SAF from other biofeeds. Our process technology can be an important step in this direction.
Topsoe and Steeper Energy , a developer of biomass conversiontechnologies, signed a global licensing agreement for a complete waste-to-fuel solution. The end-products include Sustainable Aviation Fuel (SAF), marine biofuel, and renewable diesel from waste biomass. Steeper Energy was founded in 2011 and is backed by TOM Capital.
Electrochaea GmbH, a European provider of renewable methane technology, has established a California-based US subsidiary, Electrochaea Corporation, to accelerate the commercial roll-out of its technology in North America. This gas can be directly injected into the existing natural gas grid or used immediately.
After intensive tests on test benches and pilot installations at customers in 2022, Rolls-Royce will continuously market new mtu Series 500 and Series 4000 gas engines beginning in 2023 for use with up to 100 percent hydrogen, and on a design to order basis conversion kits to allow already installed gas engines in the field to run on 100% hydrogen.
The US Department of Energy’s Oak Ridge National Laboratory (ORNL) has licensed its high-power wireless charging technology for electric vehicles to HEVO. megawatts (1,500 kilowatts) per square meter—eight to 10 times higher than currently available technology. It’s not just about charging your vehicle really fast.
Raven SR , a renewable fuels company, and Hyzon Motors Inc., into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven’s technology dependably converts mixed carbonaceous waste into consistent hydrogen-rich syngas which then produces more hydrogen per ton of waste than other processes.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content