Remove Commercial Remove Fuel Remove Low Cost Remove Water
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels.

Low Cost 243
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

The Bloom Electrolyzer relies on the same, commercially proven and proprietary solid oxide technology platform used by Bloom Energy Servers to provide on-site electricity at high fuel efficiency. Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to break up water molecules and produce hydrogen.

Low Cost 397
article thumbnail

Argonne-led team develops new low-cost cobalt-based catalyst for PEM electrolysis

Green Car Congress

A multi-institutional team led by the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) has developed a low-cost cobalt-based catalyst for the production of hydrogen in a proton exchange membrane water electrolyzer (PEMWE). volts (Nafion 212 membrane) and low degradation in an accelerated stress test.

Low Cost 186
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,

Low Cost 315
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. HyperSolar, Inc. announced that it had reached 1.25 V (at 25 °C at pH 0). Click to enlarge.

Low Cost 246
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.

Hydrogen 475
article thumbnail

Ethanol-fueled solid oxide fuel cells with HEA internal reforming catalyst for transportation applications

Green Car Congress

Researchers from Lawrence Berkeley National Laboratory and the University of Connecticut have demonstrated high-performance metal-supported solid oxide fuel cells (MS-SOFC) with an integrated high entropy alloy (HEA) internal reforming catalyst (IRC) for transportation applications using ethanol and methanol as fuels. —Hu et al.