article thumbnail

MIT engineers create 2D polymer that self-assembles into sheets

Green Car Congress

Using a novel polymerization process, MIT chemical engineers have created a new two-dimensional polymer that self-assembles into sheets, unlike all other polymers which form one-dimensional chains. Until now, scientists had believed it was impossible to induce polymers to form 2D sheets.

Polymer 435
article thumbnail

New polymer membrane efficiently removes carbon dioxide from mixed gases; high permeability and selectivity

Green Car Congress

A team of researchers from North Carolina State University, SINTEF in Norway and the Norwegian University of Science and Technology, has developed a polymer membrane technology that removes carbon dioxide from mixed gases with both high permeability and high selectivity. A paper on their work is published in the journal Science.

Polymer 186
article thumbnail

New Fraunhofer membrane technology enables co-transport of hydrogen and natural gas

Green Car Congress

This marks a major step forward in the transportation and distribution of hydrogen as an energy source. However, the means of transporting this “green” hydrogen from the producer to the consumer are not established; Germany still does not have an extensive distribution network for hydrogen. © Andreas Junghans GmbH. © Fraunhofer.

Hydrogen 511
article thumbnail

New solid polymer electrolyte outperforms Nafion; novel polymer folding

Green Car Congress

Researchers, led by a team from the University of Pennsylvania, have used a polymer-folding mechanism to develop a new and versatile kind of solid polymer electrolyte (SPE) that currently offers proton conductivity faster than Nafion by a factor of 2, the benchmark for fuel cell membranes. —Trigg et al.

Polymer 250
article thumbnail

Linde and Shell team up to commercialize lower-carbon technology for ethylene: E-ODH

Green Car Congress

The catalytic process is an alternative route to ethane steam cracking, offering the potential of economic advantages, acetic acid co-production and significantly lower overall carbon footprint through electrification of power input. —John van der Velden, Senior Vice President Global Sales & Technology at Linde Engineering.

Carbon 355
article thumbnail

Polymer microcapsules with liquid carbonate cores and silicone shells offer a new approach to carbon capture

Green Car Congress

The approach, described in a paper in the journal Nature Communications , could be an important advance in carbon capture and sequestration (CCS). They have significant performance advantages over the carbon-absorbing materials used in current CCS technology. carbon dioxide uptake and release over repeated cycles.

Polymer 150
article thumbnail

Sulfur-carbon nanofiber composite for solid-state Li-sulfur batteries

Green Car Congress

Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Schematic images and electron microscope photograph of sulfur-carbon composites (top).

Carbon 243