This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The first China-developed hydrogen fuel cell hybrid locomotive—from core power to main components—has started trial runs on a 627 km railway line for coal transport in north China’s Inner Mongolia Autonomous Region. and the Hydrogen Energy Co., and the Hydrogen Energy Co., Source: Xinhua.
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbonhydrogen. The cooperation has these main building blocks: Construction of new gas power plants (CCGTs), contributing to Germany’s phase-out roadmap for coal.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
The Gold Hydrogen Program , a coalition of organizations seeking to support the scale of this clean energy resource, announced its launch and the debut of a pilot microbial Gold Hydrogen Process. Found naturally deep in the Earth, “gold hydrogen” is a resource that is produced biologically and in the subsurface.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Our analysis assumes that captured carbon dioxide can be stored indefinitely, an optimistic and unproven assumption.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The test production was carried out in HYBRIT’s pilot plant in Luleå and shows that it is possible to reduce iron ore with fossil-free hydrogen, instead of removing the oxygen with coal and coke. So far, about 100 tons have been produced.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
Australia-based Woodside has signed an agreement with Japanese companies JERA Inc, Marubeni Corporation and IHI Corporation to undertake a joint study examining the large-scale export of hydrogen as ammonia for use decarbonizing coal-fired power generation in Japan. Green hydrogen is produced from renewable energy using electrolysis.
EVR), which will be spun-off from Teck as an independent publicly-listed Canadian company and will own and operate the steelmaking coal business previously conducted by Teck. Nippon Steel has conducted technological development to reduce CO 2 emissions by injecting hydrogen into blast furnaces since 2008.
Materials to pursue the offtake of blue ammonia from ExxonMobil’s planned low-carbonhydrogen project at its integrated complex in Baytown, Texas. The company says that blue ammonia will replace conventional coal as a main fuel and accelerate energy transition with less carbon footprint and cleaner power.
Flow diagram of coal tar hydrogenation process. Researchers in China report the production of gasoline and diesel from coal tar via an optimized catalytic hydrogenation using two serial fixed beds, the first with a hydrofining catalyst of MoNi/?-Al million tons of coal tar was further processed. Click to enlarge.
The US Department of Energy’s (DOE) Office of Fossil Energy (FE) has selected four projects for cost-shared research and development under the funding opportunity announcement (FOA), DE-FOA-0002180, Design Development and System Integration Design Studies for Coal FIRST Concepts.
As the global energy market shifts from coal, petroleum fuel, and natural gas to more environmentally friendly primary energy sources, hydrogen is becoming a crucial pillar in the clean energy movement. Understanding where the hydrogen goes under strain in a bulk material is critical to understanding embrittlement.
This will be the world’s first demonstration project in which a large amount of ammonia will be co-fired in a large-scale commercial coal-fired power plant. This will be the world’s first demonstration project in which a large amount of ammonia will be co-fired in a large-scale commercial coal-fired power plant.
UK-based B9 Coal, established in 2009 with the objective of developing projects combining Underground Coal Gasification (UCG) with Carbon Capture and Storage (CCS) and alkaline hydrogen fuel cells, is bringing together a consortium including WSP Group, AFC Energy and Linc Energy to develop such a project.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Oxidation of methane also introduces impurities in the product stream.
KGaA (SHS) have signed a Memorandum of Understanding to explore the viability of transforming iron ore pellets into low-carbon hot briquetted iron (HBI) (a form of Direct Reduced Iron, DRI), a steel feedstock ( earlier post ) using green hydrogen generated from hydro-electricity in Canada. Earlier post.).
KHI’s view of a “CO 2 -free hydrogen chain”. KHI) will build the first ocean-going ships to carry liquefied hydrogen (LH 2 ), with plans for a demonstration test by 2017 in which liquefied hydrogen will be shipped from the state of Victoria in Australia to Japan. Source: KHI. Click to enlarge. Click to enlarge.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Depending on feedstock carbon content, DGF produces up to 3.6
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
The US Department of Energy (DOE) has issued a funding opportunity announcement ( DE-FOA-0000784 ) for up to $13 million to support the development of advanced coal gasification systems. AOI 1: Coal Feed Technologies - Low-rank Coal Feed or Coal-woody Biomass Feed Technologies. poplar, pine and hardwoods]).
The results show there is no realistic pathway to full decarbonization of internal combustion engine vehicles, and that only battery and hydrogen fuel-cell EVs have potential to be very low-GHG passenger vehicle pathways. Based on stated policies, it accounts for changes in the carbon intensity during the useful lifetime of the vehicles.
The US DOE is soliciting ( DE-FOA-0001051 ) projects for up to $10 million in awards to target technological advancements to lower the cost of producing hydrogen and/or high-hydrogen syngas from coal for use in 90% carbon capture power generation and/or gasification-based liquid (transportation) fuel production: methanol or diesel.
Aker Carbon Capture and Haldor Topsoe have signed a memorandum of understanding with the intention to offer a complete solution for low-carbonhydrogen production. Aker Carbon Capture’s proprietary carbon capture process uses a mixture of water and organic amine solvents to absorb the CO 2.
The agreement marks the first US purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant utilizing carbon capture. billion plant will receive $450 million in funding from the Clean Coal Power Initiative; of this, $211 million comes from the American Recovery and Reinvestment Act of 2009.
German steel companies thyssenkrupp Steel and HKM and the Port of Rotterdam will jointly investigate setting up international supply chains for hydrogen. The Port of Rotterdam is already investigating the import of hydrogen from a large number of countries and regions all over the world.
reduced by 100% fossil-free hydrogen instead of coal and coke, with good results. The hydrogen gas used in the direct reduction process is produced by electrolysis of water with fossil-free electricity, and can be used directly or stored for later use. The steel is now being delivered to the first customer, the Volvo Group.
Algae.Tec has signed a deal with Australia’s largest power company to site an algae carbon capture and biofuels production facility alongside a 2640MW coal-fired power station near Sydney. million tonnes of coal per year and delivers power to eastern Australia, from South Australia to Northern Queensland.
Norwegian startup Blastr Green Steel is planning to establish a green steel plant with an integrated hydrogen production facility in Inkoo, Finland. Fortum has developed the Joddböle area since the dismantling of its Inkoo coal-fired power plant there in 2017-2020. The now-demolished Inkoo coal plant. tonnes of CO₂.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. As the gases exit the catalyst-bed chamber, the molecules bind into a very high quality hydrogen-rich biosyngas free of tar, soot and heavy metals. This is game-changing technology. —Lancaster Mayor R. Rex Parris.
It aims to replace coking coal, traditionally needed for iron ore-based steelmaking, with fossil-free electricity and hydrogen. The result is expected to be fossil-free steelmaking technology, with virtually no carbon footprint. HYBRIT was started by SSAB, iron ore producer LKAB and energy firm Vattenfall. Source: HYBRIT.
Using barium oxide nanoparticles, a team of researchers led by Georgia Tech has modified the surface of conventional anodes for solid oxide fuel cells (SOFCs) to enable operation at lower temperatures (750 °C) with carbon-containing gases—e.g., gasified coal—by eliminating the coking problem. note in their paper.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil-fuel-dependent sectors of the economy, such as steel, heavy-duty vehicles, shipping and cement, according to a new report from BloombergNEF (BNEF). Summary of the economics of a hydrogen economy.
The BMW Group is expanding sourcing of low-carbon steel to two suppliers, meeting up to 40% of steel demand at European plants by 2030. earlier post ) The BMW Group has now signed an agreement with Salzgitter AG for delivery of low-carbon steel. Our aim is to reduce vehicles’ lifecycle carbon footprint with a holistic approach.
Syngas can be made in many ways, but one of those, methane dry reforming, is increasingly important because the chemical inputs are methane and carbon dioxide, two potent and problematic greenhouse gases. Syngas is a mix of carbon monoxide and hydrogen gas that can be made from coal, biomass, natural gas and other sources.
SSAB aims to deliver fossil-free steel to the market in commercial scale during 2026 and delivered the first steel made of hydrogen-reduced iron in 2021. This process virtually eliminates carbon dioxide-emissions in steel production.
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost Coal Conversion to High-Hydrogen Syngas.
Hitachi Energy signed a Memorandum of Understanding (MoU) with H2 Green Steel to leverage electrification, digitalization, and hydrogen to support the decarbonization of the steel industry. This is done by exposing iron ore to hydrogen, which reacts with the oxygen in the ore to form steam as a residual. H2 Green Steel production.
Nikola Corporation and KeyState Natural Gas Synthesis , a clean hydrogen and chemicals production facility under development, are working together to create Pennsylvania’s first low-carbonhydrogen production value chain, which includes full integration of commercial carbon capture and storage.
The US Department of Energy (DOE) has selected 8 research projects for funding that will focus on gasification of coal/biomass to produce synthetic gas (syngas) as a pathway to producing power, hydrogen, fuel or chemicals. will blend coal and biomass to develop a feedstock for co-gasification. Clean Coal Briquette Inc.
World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CT—the conversion of coal to liquid fuels (CTL). By 2020, CTL is expected to account for 15% of the coal use in China. —Wang et al.
Since carbon dioxide is not emitted when ammonia (NH 3 ) is burned, it is viewed to have promise as a next-generation fuel that could mitigate shipping’s impact on global warming. In addition, it is said that zero emissions can be realized by utilizing CO 2 -free hydrogen as a raw material for ammonia.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content