Remove Low Cost Remove Presentations Remove Resource Remove Water
article thumbnail

Penn State, FSU team develops low-cost, efficient layered heterostructure catalyst for water-splitting

Green Car Congress

A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process.

Low Cost 170
article thumbnail

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

Green Car Congress

As the V OC of the presented c-Si cells is only ∼600 mV, four cells need to be connected in series to achieve stable water splitting performance. We demonstrate in this study that, thanks to their high V OC , three series-connected SHJ cells can already stably drive the water splitting reaction at unprecedented SHE.

Solar 150
article thumbnail

US/China team develops robust, stable Ni/Fe OER catalyst for water-splitting at low overpotentials

Green Car Congress

A team from the University of Houston and Hunan Normal University in China has developed an active and durable oxygen evolution reaction (OER) catalyst for water splitting that meets commercial crtieria for current densities at low overpotentials. to deliver 200 mA cm -2 , unsatisfactory for the commercial requirements of 1.8-2.4

Water 170
article thumbnail

KTH team develops new cost-effective water-splitting electrocatalyst for H2 production

Green Car Congress

Researchers at KTH Royal Institute of Technology in Stockholm have developed a new cost-effective electrocatalyst for water-splitting to produce hydrogen. Water splitting is considered one of the most promising strategies to produce chemical fuels such as hydrogen. —Fan et al.

Water 150
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

The battery, which can be low cost and reliable in terms of safety, provides another chemistry for post Li-ion batteries, they suggest, and with higher practical energy densities than Li-air systems for supporting applications including electric vehicles and large-scale grid energy storage. Its average discharge voltage is about 4.0

Li-ion 281
article thumbnail

KIST team develops membrane reactor system to produce pure H2 from ammonia with high productivity

Green Car Congress

Steam is adopted as a sweep gas, presenting efficient H 2 recovery (>91%) while replacing conventionally utilized noble carrier gases that require additional gas separation processes. The research team at KIST developed a low-cost membrane material and a catalyst for decomposition of ammonia into hydrogen and nitrogen.

article thumbnail

HZB, 3M team explores water management in PFIA membranes for fuel cells; better performance at higher temps and low humidity

Green Car Congress

Nafion (a sulfonated tetrafluoroethylene based fluoropolymer-copolymer)—the most commonly used PEM membrane—only performs well at high humidity conditions and temperatures below 90 °C, thus limiting its efficiency and operational area and increasing the fuel cell cost. These are acidic groups, shown in the magnifying glass.

Water 170