This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewablehydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
NuScale Power, along with Shell Global Solutions (Shell) and industry participants will develop and assess a concept for an economically optimized Integrated Energy System (IES) for hydrogen production using electricity and process heat from a NuScale VOYGR small modular reactor (SMR) power plant.
Researchers at the Fraunhofer-Gesellschaft have developed a membrane technology for the energy-efficient and economic separation of hydrogen from natural gas. This technology makes it possible for the two substances to be routed through the national natural gas grid together and then isolated from one another at their final destination.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. We have just 13 years to deliver a net-zero electricity grid for the UK. million (US$4.24
The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. It builds on a project launched last year to demonstrate how hydrogen production facilities could be installed at operating nuclear power plants. The report was published by the National Renewable Energy Laboratory.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
A microgrid based on renewable energies with hydrogen-powered fuel cells for emergency and peak power as well as hydrogen combustion engines can meet the special energy requirements of port facilities. It will not only set new standards in cargo handling, but also in climate-friendly energy supply.
In February 2022, GTI Energy, S&P Global Commodity Insights and the National Energy Technology Laboratory (NETL) launched the Open Hydrogen Initiative (OHI), a collaboration to further transparency into the environmental impact of hydrogen production and help unlock its full potential as an important driver of energy transitions.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
HydroWing, in partnership with Tocardo, introduced the THyPSO (Tidal Hydrogen production, Storage and Offtake), a concept that creates green hydrogen from the sea, contributing to the wider global decarbonization of energy systems. THyPSO has capacity to hold up to two weeks’ worth of hydrogen production in pressurized storage tanks.
GKN Hydrogen and Southern California Gas Co. SoCalGas) will work with the US Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) on an innovative green hydrogen storage solution. GKN Hydrogen’s HY2MEGA can enable safe, long duration clean energy storage without the need for compression.
The United States has an extensive network of approximately 3,000,000 miles of natural gas pipelines and more than 1,600 miles of dedicated hydrogen pipeline. The HyBlend team will test pipeline materials in varying concentrations of hydrogen at pressures up to 100 bar to assess their susceptibility to hydrogen effects.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
Phil Ansell, an aerospace engineer at the University of Illinois Urbana-Champaign, modeled the life cycle carbon dioxide equivalent emissions of liquid hydrogen production required to meet the fuel needs of Chicago’s O’Hare International Airport (ORD) with today’s electric grid mix.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewablehydrogen. At peak times, some US states and countries already have more renewable power than their grids can handle.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. Westinghouse Electric Company, Front-End Engineering Designs and Investigative Studies for Integrating Commercial Electrolysis Hydrogen Production with Selected Light-Water Reactors.
The US Department of Energy (DOE) released draft guidance for a Clean Hydrogen Production Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. A lifecycle system boundary enables consistent and comprehensive evaluation of diverse hydrogen production systems.
The loan guarantee will help finance construction of the largest clean hydrogen storage facility in the world, capable of providing long-term low-cost, seasonal energy storage, furthering grid stability. ACES Delta is a joint venture between Mitsubishi Power Americas and Magnum Development.
Seven companies from the GET H2 initiative in Europe want to build a cross-border pipeline for green hydrogen. By using green hydrogen in refineries, in steel production and for other industrial uses, the overall project should be able to avoid CO 2 emissions of up to 16 million tonnes by 2030.
Total and Engie signed a cooperation agreement to design, develop, build and operate the Masshylia project, France’s largest renewablehydrogen production site at Châteauneuf-les-Martigues in the Provence-Alpes-Côte d’Azur South region.
In an open-access paper published in the Proceedings of the National Academy of Sciences (PNAS), the researchers report that the catalyst can cleanly and efficiently accelerate the reaction that removes hydrogen atoms from a liquid chemical carrier such as methanol.
While the main energy source to Tevva’s electric trucks is grid electricity, the company optimizes hydrogen and fuel cell (H 2 FC) range extension to support the unique full-day, long-distance duty cycles of freight trucks. Tevva is an electric truck company with optional range extension technology that allows its 7.5-19t
The implementation of this project, the first industrial-scale power-to-X-to-power demonstrator with an advanced hydrogen turbine, will be launched at Smurfit Kappa PRF’s site—a company specialized in manufacturing recycled paper—in Saillat-sur-Vienne, France. In this case, the “X” will be hydrogen.
Raven SR plans to use INNIO’s Jenbacher engines [60 Hz] with a “Ready for H2” option to produce renewable energy. The energy system will power and heat Raven SR’s S-Series hydrogen production facility at a sanitary landfill in Richmond, California. The hydrogen product will be resold to power fuel cells in heavy-duty trucks.
With battery storage able to provide a unique role in balancing a renewable electricity grid, Toby Gill, CEO of Intelligent Power Generation, asks could innovations in green hydrogen and biofuel technologies contribute to a more optimized and economical energy mix? Our grid is changing, and so must the way we operate it.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. The solution will lower the cost of hydrogen by being able to run off grid, opening up more and better wind sites.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
in conjunction with the Government of Canada and the Province of Alberta, announced a multi-billion dollar plan to build a landmark new net-zero blue hydrogen energy complex. Canada’s clean energy diversification strategy and regulatory framework make clear that hydrogen is a key enabler for carbon neutrality by 2050. blue hydrogen).
Despite the much-vaunted megatrend involving the global electrification drive and shift to renewable energy , the most ambitious pledges by Big Oil to pursue net-zero agendas remain weak at best. But Total is not just content to compete in the traditional renewable energy arena of wind and solar but is also giving Tesla Inc. . #3
Starting next year, the jointly developed pilot plant will produce major quantities of hydrogen using electricity from renewable sources, mostly from nearby wind power stations. This hydrogen can be stored, loaded into tank trailers or fed directly into the natural gas grid, for use in generating heat or electricity.
The Australian Renewable Energy Agency (ARENA) is providing $950,000 in funding for gas company BOC for a renewablehydrogen production and refueling project in Queensland. The electrolyzer will have the capacity to produce 2400 kilograms of hydrogen per month. million to 16 hydrogen research projects.
A hydrogen exchange, similar to electricity and gas exchanges, could act as a catalyst for a market for climate-neutral hydrogen, according to an exploratory study, “A Hydrogen Exchange for the Climate”, presented to Eric Wiebes, the Netherlands Minister of Economic Affairs and Climate Policy.
The technology group Wärtsilä and WEC Energy Group have successfully tested the capabilities of a Wärtsilä engine running on 25 vol% hydrogen-blended fuel. Throughout the testing period, the Wärtsilä engine continued to supply power to the grid. As a fuel, hydrogen burns without producing any carbon species including CO 2.
They could also back up or temporarily replace grid-sourced electricity for residential and small commercial enterprises at times of power disruption. GM is supplying HYDROTEC fuel cell power cubes to Renewable Innovations of Lindon, Utah to build the Mobile Power Generator. Retail EV Charging Stations.
Using current technologies, all evaluated biofuel, battery electric, and hydrogen fuel cell vehicle pathways offer significant C2G GHG emissions reduction compared to the current gasoline internal combustion engine vehicle. When fueled by hydrogen produced from landfill gas, the total dropped to 117 g CO 2 e/mi.
The National Renewable Energy Laboratory (NREL) has released a comprehensive vision for deeply decarbonizing transportation. Optimally integrating transportation with buildings, the grid, and renewables to realize system-wide benefits. —Zia Abdullah, NREL’s bioenergy laboratory program manager.
Naturgy and Enagás are studying the production of green hydrogen from a 250MW floating offshore wind farm and another 100MW onshore wind farm in Asturias (Spain) for industrial consumption in this Autonomous Region. Enagás and ACCIONA launch green hydrogen project in Mallorca.
A new project launched by the US Department of Energy (DOE) and led by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) will work in support of H 2 USA, the public private partnership introduced in 2013 by the Energy Department and industry stakeholders to address the challenge of hydrogen infrastructure.
UK-based energy firm SSE is the first UK utility to trial First Hydrogen ’s hydrogen-powered van in a real-life setting, enabling SSE to evaluate the benefits of hydrogen mobility alongside its growing fleet of EV engineering and maintenance vehicles as an alternative to fossil fuels. First Hydrogen Corp.
Department of Energy and its National Renewable Energy Laboratory (NREL) to provide a new proof point for hydrogen fuel-cell tech—in a megawatt-scale, multitasking power-generation package that might potentially be used for renewable energy storage and smoothing the grid.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content