This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. We plan to initially deliver 100 tons per day (t/d) of green hydrogen and ramp up production to 300 t/d within three years, depending on demand. Vessel specifications. Length overall.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., The SOEC is a ceramic cell that uses electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). —Hauch et al. No rare metals or conflict minerals are used.
In order to advance its fleet electrification and emissions reduction goals, the Sewerage and Water Board of New Orleans (SWBNO) has deployed six new XL plug-in hybrid electric Ford F-150 pickup trucks to its fleet. The fund was developed to help public fleets incorporate cleaner fuels and technologies into their operations.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
Mercedes-Benz AG is the first car manufacturer to take an equity stake in Swedish start-up H2 Green Steel (H2GS) as a way to introduce CO 2 free steel into series production. As a preferred partner of the start-up, we will be launching green steel in various vehicle models as early as 2025.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
Allianz Capital Partners, on behalf of Allianz insurance companies, has signed an agreement to acquire a minority stake in Ren-Gas Oy , a green hydrogen and power-to-gas project developer based in Finland. Allianz will provide funding of €25 million to Ren-Gas to support the company’s project portfolio towards execution.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). The generation of pure hydrogen gas requires a great deal of energy. A paper on their work appears in the journal Fuel. (A) —Chehade et al.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. The machine operates in near-shore areas (approximately 0.3-2
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.
thyssenkrupp’s proprietary water electrolysis technology for the production of. green hydrogen meets the requirements for participation in the primary control reserve market. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable In their proposed Lingen Green Hydrogen project, the two firms intend to build an initial 50 ?megawatt Electrolysis splits water into hydrogen and oxygen gases. This could provide green hydrogen to ?both
Honeywell has developed new catalyst-coated membrane (CCMs) technology for green hydrogen production and will further test the technology with electrolyzer manufacturers.
Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. To make the material, nanospheres made of cobalt–nickel–glycerate are subjected to combined hydrothermal sulfidation and gas-phase phosphorization. Zhang, S.L., and Lou, X.W.
The investment round was led by AP Ventures, a significant investor in breakthrough hydrogen technologies, and included New Energy Technologies, Chevron Technology Ventures, Osaka Gas USA, and Mitsubishi Heavy Industries. This allows for the synthesis of documentably 100% green ammonia.
Renewable energy output is subject to large fluctuations, so FH2R will adjust to supply and demand in the power grid in order to maximize utilization of this energy while establishing low-cost, Green hydrogen production technology.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
bp signed a memorandum of understanding (MoU) with the Government of Egypt under which bp will explore the potential for establishing a new green hydrogen production facility in the country. Green hydrogen is produced by the electrolysis of water, powered by renewable energy.
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The team is back in the lab to find a fix. Shamlou, Elmira & Vidic, Radisav & Khanna, Vikas.
Researchers in Spain have developed hydrogen production without contact electrodes via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures ( Nature Energy. In thermochemical cycles, the highly energy-demanding splitting of water molecules (?H Serra et al.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. Photoelectrochemical Water Splitting Cell Architectures. (A) A paper describing their system is publishedin the journal Joule. —Landman et al.
The new manufacturing facility will produce low- and zero-lifecycle carbon footprint gasoline blendstock made from natural gas and renewable natural gas. Nacero Blue Gasoline is made from natural gas using renewable power and carbon capture. Nacero Green Gasoline is made from renewable natural gas and captured flare gas.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas.
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water. And, unlike electrolysis, the process does not require water as a feedstock, preserving another critical and scarce resource.
The Green Hydrogen Coalition, in conjunction with the Los Angeles Department of Water and Power (LADWP) and other key partners, launched HyDeal LA , an initiative to achieve at-scale green hydrogen procurement at $1.50/kilogram Green hydrogen is the key to reliably achieving 100% renewable energy. kg before 2030.
Researchers from the University of Twente in The Netherlands have developed a new high-entropy perovskite oxide (HEO) as a high-activity electrocatalyst for the oxygen evolution reaction (OER)—the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation.
This is a carbon-free hydrogen production method that extracts hydrogen by decomposing water with electricity generated from nuclear power. Source: USNC The MMR is a 4 th Generation High Temperature Gas-cooled Reactor with output from 5-10 MW e and 15-30 MW th ; demonstration units are scheduled for first nuclear power in 2026.
a pioneer in natural gas decarbonization, recently raised $11.5 When renewable natural gas is used as the feedstock, C-Zero’s technology can even be carbon negative, effectively extracting carbon dioxide from the atmosphere and permanently storing it in the form of high-density solid carbon. C-Zero Inc.,
IHS Markit forecasts that annual global investments in green hydrogen—hydrogen production powered by renewable sources—will exceed US$1 billion by 2023. The increasing interest has been driven by falling electrolysis and renewable power costs and by increasing government focus on green hydrogen.
Italy-based Snam, a leading energy infrastructure operator, and Saipem, an Italian multinational oilfield services company, have signed a Memorandum of Understanding to start working together to define and to develop initiatives for green hydrogen production and transport, and for carbon dioxide capture, transport and reuse or storage (CCS and CCU).
FlyZero compared zero-carbon emission energy sources such as batteries, hydrogen and ammonia; the team concluded that green liquid hydrogen is the most viable, able to power large aircraft utilizing fuel cell, gas turbine and hybrid systems. It is critical to achieve these dates to hit the net zero 2050 goal.
Unlike exhaust from burning coal and gas that contains CO 2 , burning hydrogen emits only water vapor and oxygen. Hydrogen is not a greenhouse gas, but its chemical reactions in the atmosphere affect greenhouse gases such as methane, ozone, and stratospheric water vapor. Sand et al.
Haldor Topsoe and Nel ASA have entered a memorandum of understanding (MOU) with the intent to offer customers complete solution for green ammonia and methanol produced with renewable electricity. Topsoe is currently engaged in several projects to produce green hydrogen, green ammonia, eMethanol, and green fuels.
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. Currently, hydrogen can cost up to $15 per kilogram.
BMW Group and H2 Green Steel have signed a final contract on the delivery of CO 2 -reduced steel. H2 Green Steel is committed to the Scope 1, 2 and upstream Scope 3 requirements as defined in the GHG Protocol. H2 Green Steel’s work to reduce emissions will impact BMW Group’s material supply chain and its upstream Scope 3 emissions.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content