This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 —Song et al. Song et al. 2301206120
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
Researchers at the University of Exeter (UK) have developed a novel p-type LaFeO 3 photoelectrode using an inexpensive and scalable spray pyrolysis method. The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability.
Researchers at the University of Oklahoma, in collaboration with the University of Tulsa, have a novel approach for the water-assisted upgrading of the renewable chemical furfural, doubling or tripling the rate of conversion. Energy and water are interconnected in the production of renewable fuels.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%
The optimized photo-electrochemical water splitting device uses light absorbers made of silicon arranged in closely packed pillars, dotted with tiny clusters of the new molybdenum sulfide catalyst. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark. Image courtesy of Christian D. Click to enlarge.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Credit: DICP. —Wang et al.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
Researchers from the University of Twente in The Netherlands have developed a new high-entropy perovskite oxide (HEO) as a high-activity electrocatalyst for the oxygen evolution reaction (OER)—the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation.
A team of researchers led by a group from the University of Maryland has. developed a halogen conversion–intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 mAh g -1 (for the total weight of the electrode) at an average potential of 4.2 Proposed conversion–intercalation chemistry.
Researchers at Arizona State University and Argonne National Laboratory reported advances toward perfecting a functional artificial leaf in a paper in Nature Chemistry. The researchers took a closer look at how nature had overcome a related problem in the part of the photosynthetic process where water is oxidized to yield oxygen.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
Recent research in electrocatalytic CO 2 conversion points the way to using CO 2 as a feedstock and renewable electricity as an energy supply for the synthesis of different types of fuel and value-added chemicals such as ethylene, ethanol, and propane. Their paper is published in Proceedings of the National Academy of Sciences (PNAS).
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. When immersed in water with visible light irradiation (? ? In the present study, we developed a new architecture for direct solar water-splitting.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
One-pot process for conversion of cellulose to hexane, a gasoline component. Researchers at Tohoku University in Japan have developed a one-pot process to convert cellulose to n-hexane in the presence of hydrogen gas. To the best of our knowledge, this conversion process has not yet been reported. Credit: ACS, Liu et al.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. The system consists of two main chambers: an upper chamber with granulated sodium borohydride powder and a lower reaction chamber with a solution of water and catalyst. Zakhvatkin et al.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Recently, they have succeeded in increasing the light energy conversion efficiency by applying this technology to hematite (?-Fe under 600nm).
Researchers at the University of Delaware have developed an inexpensive bismuth?carbon CO can then be reacted with H 2 O via the water?gas As such, development of Bi-based cathodes for conversion of CO 2 to CO would represent an important development for the fields of CO 2 electrocatalysis and renewable energy conversion.
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. 2014), “A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide,” Adv.
The University of Bath and SAIC Motor UK Technical Centre are collaborating on a project to identify the most efficient conditions for the optimum performance of gasoline particulate filters (GPFs), to help minimize vehicle impact on the environment.
While Ni metal catalyzes the hydrogen evolution reaction (HER) exclusively under CO 2 RR conditions, Ni single atomic sites present a high CO selectivity of 95% under an overpotential of 550 mV in water, and an excellent stability over 20 hours’ continuous electrolysis. The current density can be scaled up to more than 50 mA cm?2
Researchers at the University of British Columbia (UBC) have used a plasma pre-treatment to achieve through-plane wettability of carbon layers in a fuel cell electrode. Porous carbon based layers have become standard electrode materials in many energy conversion and storage applications. —first author Beniamin Zahiri.
A new study, led by academics at St John’s College, University of Cambridge, has used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. Katarzyna P.
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron —Zetian Mi, U-M professor of electrical engineering and computer science, who co-led the work with Jun Song, professor of materials engineering at McGill University. Image credit: Baowen Zhou.
The University of Michigan. The University of Michigan proposes the RAFT concept as a solution for hydrokinetic energy harvesting. University of Washington. The bottom, sides, and surface of rivers and tidal channels confine water flow, which significantly alters the operation of river and tidal turbines.
In working to elucidate the chemistry of hydrodeoxygenation (HDO) for the catalytic upgrading of pyrolytic bio-oil to fuel-grade products, researchers at Pacific Northwest National Laboratory (PNNL) have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions.
Wyman, the Ford Motor Company Chair in Environmental Engineering at the University of California, Riverside’s Bourns College of Engineering, has developed a versatile, relatively non-toxic, and efficient way to convert lignocellulosic biomass into biofuels and chemicals. Overview of the process. 2014) Click to enlarge. Cai, a Ph.D.
As a result, there is a critical need to create new pathways for biofuel conversion that reduces carbon waste, prevents the loss of CO 2 emissions, and in turn, maximizes the amount of renewable fuel a conversion process yields. University of Wisconsin-Madison. The awardees are: LanzaTech, Inc.
Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues from Oregon State University, have developed PNNL a durable, inexpensive molybdenum-phosphide catalyst that efficiently converts wastewater and seawater into hydrogen. Details of the team’s study appear in the journal ACS Catalysis. The authors are filing a patent.
One way to mitigate high feedstock cost is to maximize conversion into the bioproduct of interest. This maximization, though, is limited because of the production of CO 2 during the conversion of sugar into acetyl-CoA in traditional fermentation processes. Wiedel, Jennifer Au, Maciek R. Antoniewicz, Eleftherios T.
Researchers in Canada have demonstrated a new photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. overall water splitting reaction. These free charges split water molecules into hydrogen and oxygen. … in neutral (pH?~?7.0)
Researchers at Stanford University have developed a nanocrystalline copper material that produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25?volts volts versus the reversible hydrogen electrode) in CO-saturated alkaline water. volts to –0.5?volts Christina W.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water. 0c00986.
Researchers at the University of California Santa Barbara have developed catalytic molten metals to pyrolize methane to release hydrogen and to form solid carbon. Bi 0.73 ) achieved 95% methane conversion at 1065°C in a 1.1-meter Under these conditions, the equilibrium conversion is 98%. Metallic catalysts (e.g.,
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content