This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable wind farm in the North Sea and the hydrogen produced will be used in the refinery.?. Electrolysis splits water into hydrogen and oxygen gases. renewable power, producing zero emissions. west Germany. operational by 2024.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
The Gigastack project, led by ITM Power, Ørsted, Phillips 66 Limited and Element Energy, will show how renewable hydrogen derived from offshore wind can support the UK’s 2050 net-zero greenhouse gas emission target. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g.,
thyssenkrupp recently introduced industrial-scale water electrolysis for large projects. By splitting water into hydrogen and oxygen, this technology delivers “green” hydrogen, a clean, CO 2 -free energy carrier. The only inputs needed are water and renewable electricity from wind, hydro power or photovoltaics.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. This is a game-changer for both nuclear energy and carbon-free hydrogen production for numerous industries. Earlier post.) Prairie Island.
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy. This is a significant moment for the lithium industry.
The aim of their initiative Climate Leap is to support local and regional investments that reduce emissions of carbon dioxide and other gases that affect the climate. The new facility will upcycle carbon dioxide emissions and combine this with green hydrogen, made from renewable electricity and water to produce eMethanol.
Cargill and BAR Technologies have embarked on a strategic project with naval architect Deltamarin to bring cutting edge wind propulsion technology to commercial shipping. Through this partnership we will bring bespoke wind solutions to customers who are actively seeking to reduce CO 2 emissions from their supply chain.
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. There will, however, also be a need for renewable fuels to enable long-term storage in persistent low wind and solar weather conditions.
Sundsvall Energi will partner with Liquid Wind to be the host and provide carbon dioxide for the second commercial-scale—100,000 t—electrofuel facility in Sweden. Biogenic carbon dioxide from the Sundsvall energy facility will be captured and combined with renewable hydrogen to generate green electrofuel, eMethanol.
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity.
The US Department of Energy (DOE) released a new report that frames an integrated challenge and opportunity space around the water-energy nexus for DOE and its partners and lays the foundation for future efforts. Present day water and energy systems are tightly intertwined. Source: DOE. Click to enlarge.
UK-based ULEMCo has worked with Yorkshire Water to produce what is believed to be the first water tanker anywhere to operate on hydrogen fuel. tonne bowser has been converted from a standard truck to use hydrogen dual fuel, an approach that allows fleet managers to transition more quickly to low carbon operation.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time. barrel per ton of feedstock.
Anthropogenic chemical carbon cycle. In a Perspective published in the Journal of the American Chemical Society , researchers from the Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California describe their work on developing the feasible anthropogenic recycling of carbon dioxide.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The post-combustion outlet gas is more easily separated into water and CO 2 to the pipeline, thereby lowering the electricity costs of grids with high levels of VRE.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
Andrews have demonstrated that ammonia can be synthesized directly from air (instead of N 2 ) and H 2 O (instead of H 2 ) under a mild condition (room temperature, one atmosphere) with supplied electricity which can be obtained from renewable resources such as solar, wind or marine. —Lan et al. Rong Lan, John T.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The most compact form of captured carbon is through its transformation to solid carbon.
This fuel mixture will reduce carbon emissions by more than 75% compared to the retiring coal-fired technology. Between 2025 and 2045, the hydrogen capability will be systematically increased to 100% renewable hydrogen, enabling carbon-free utility-scale power generation. and Hitachi, Ltd.
Statoil has made the final investment decision to build the world’s first floating wind farm: The Hywind pilot park offshore Peterhead in Aberdeenshire, Scotland. The wind farm will power around 20,000 households. Statoil is proud to develop the world’s first floating wind farm. Production start is expected in late 2017.
and HCS Group GmbH, a long-time customer of Gevo, have signed a project memorandum of understanding (MOU) to develop and to build a renewable hydrocarbon facility at HCS Group’s site located in Speyer, Germany, which would utilize Gevo’s low-carbon sustainable aviation fuel (SAF) technology: Alcohol-to-Jet Synthetic Paraffinic Kerosene.
Water and oxygen are the only by-products. Even in a comprehensive wheel-to-well analysis that includes the construction and operation of the e-gas plant and the wind turbines, CO 2 emissions are just 20 grams per kilometer (32 g/mile). The groundbreaking environmental footprint was recently certified by TÜV Nord.
Their discovery has important economic implications because there are no substitute alternatives to these rare earth elements (REEs), which are indispensable due to their ability to form small and very powerful magnets essential for smart devices and low-carbon energy generation (e.g., electronics, wind turbines, hybrid cars).
announced that all facilities to be used in the FY2015 Regional Cooperation and Low-carbon Hydrogen Technology Demonstration Project commissioned by the Ministry of the Environment have been completed, and full-scale operations have commenced. and Japan Environment Systems Co., a hydrogen supply chain feasibility study.
The ultra high-strength outer shell comprises two layers: an inner layer of carbon fiber-reinforced polymer (CFRP) and an outer layer of glass fiber-reinforced polymer (GFRP). Due to the fuel’s high hydrogen content, a CNG automobile emits approximately 20% less carbon dioxide than a comparable gasoline model.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Proceeds will be used to advance the development of commercial-scale applications to decarbonize ammonia production and unlock its potential as a zero-carbon energy carrier.
In Denmark, Air Liquide inaugurated HyBalance, a pilot site for the production of carbon-free hydrogen. As part of this project, Air Liquide developed, built, and is operating the facility that produces hydrogen from water electrolysis as well as the filling center for its customers delivered by trailers.
The area has excellent conditions for industrial activities: a deep-water harbor and an excellent electricity transmission network. Green steel will be a critical raw material for developing renewable energy infrastructure, such as wind turbines, as well as in segments such as construction, the automotive industry, and consumer goods.
For FY 2014, the Hydrogen Production sub-program continued to focus on developing technologies to enable the long-term viability of hydrogen as an energy carrier for a range of applications with a focus on hydrogen from low-carbon and renewable sources.
The e-gas project consists of two main components: Audi is contributing to the construction of offshore North Sea wind turbines which will generate clean power,that is then fed into the public power grid. Wind turbines are the first significant component of the Audi e-gas project. This results in a completely closed CO 2 cycle.
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil-fuel-dependent sectors of the economy, such as steel, heavy-duty vehicles, shipping and cement, according to a new report from BloombergNEF (BNEF). MMBtu) in 2050. Source: BloombergNEF.
Now, a study by researchers at the US Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) has found that energy sorghum ( Sorghum bicolor ) behaves more like miscanthus in the way it efficiently captures light and uses water to produce abundant biomass. Energy sorghum falls somewhere in between.
Landsvirkjun , The National Power Company of Iceland, and German investment company PCC SE have agreed to explore the possibility of capturing and utilizing carbon emissions from PCC’s silicon metal plant in northeast Iceland. Carbon emissions will be utilized to produce green methanol that can, for example, replace fossil fuel in ships.
Researchers at Stanford University have developed a nanocrystalline copper material that produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25?volts volts versus the reversible hydrogen electrode) in CO-saturated alkaline water. volts to –0.5?volts
Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. The key to this Ocean Renewable Energy Storage (ORES) system is the placement of 30-meter-diameter hollow concrete spheres on the seafloor under the wind turbines. Earlier post.).
Over the last decade, momentum has been building to transform the Haber- Bosch (H-B) ammonia industry toward renewable sources of hydrogen, for example, from water electrolysis or solar thermal cycles. Gen 1 involves the use of carbon sequestration or offsets to bring the net carbon impact of the ammonia production to zero (blue ammonia).
These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity. The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity.
The Administration said that the ambitious target is grounded in analysis of cost-effective carbon pollution reductions achievable under existing law and will keep the United States on a trajectory to achieve deep economy-wide reductions on the order of 80% by 2050. The new US goal will double the pace of GHG reduction from 1.2%
To avoid CO 2 emissions associated with H2-production, electrolysis of water powered by solar, wind or hydroelectricity would be a preferred source and has achieved a level of maturity and success. Alternatively, syngas can be added to sugar fermentation to provide the necessary reducing power and carbon. … —Jones et al.
ReactWell will bring ORNL’s electrochemical process, which converts carbon dioxide directly into ethanol ( earlier post ), into the company’s existing conversion solution known as the ReactWell process. Additionally, it can operate as a dispatchable load, which may match the intermittency of renewable sources such as wind and solar.
World’s first integrated Power-to-Liquid (PtL) test facility to synthesize fuels from the air-captured carbon dioxide. Worldwide, wind and sun supply a sufficient amount of energy, but not always at the right time. In a first step, the plant captures carbon dioxide from ambient air in a cyclic process. P2X Kopernikus Project.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content