Remove Carbon Remove Conversion Remove Presentations Remove Universal
article thumbnail

Highly efficient and stable Ru-free catalyst for hydrogen generation from ammonia

Green Car Congress

Now, a team from the University at Buffalo, Southern Illinois University, University of South Carolina and Brookhaven National Laboratory reports a highly active and stable Ru-free catalyst from earth-abundant elements for efficient carbon-free hydrogen generation via ammonia decomposition. The catalyst presents 97.7%

Hydrogen 448
article thumbnail

Researchers develop wave-energy-driven CO2 reduction system for production of carbon-based liquid fuels

Green Car Congress

A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.

Carbon 370
article thumbnail

Oxford team directly converts CO2 to jet fuel using iron-based catalysts

Green Car Congress

Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%

Convert 505
article thumbnail

New polymer membrane efficiently removes carbon dioxide from mixed gases; high permeability and selectivity

Green Car Congress

A team of researchers from North Carolina State University, SINTEF in Norway and the Norwegian University of Science and Technology, has developed a polymer membrane technology that removes carbon dioxide from mixed gases with both high permeability and high selectivity. A paper on their work is published in the journal Science.

Polymer 186
article thumbnail

Researchers propose using AC and ventilation systems for decentralized production of carbon-neutral synthetic fuels

Green Car Congress

Researchers at the Karlsruhe Institute of Technology (KIT) and the University of Toronto have proposed a method enabling air conditioning and ventilation systems to produce synthetic fuels from CO 2 and water from the ambient air. The team presents this “crowd oil” concept in Nature Communications. —Professor Dittmeyer.

Carbon 236
article thumbnail

UC Santa Barbara team develops catalytic molten metals for direct conversion of methane to hydrogen without forming CO2

Green Car Congress

Researchers at the University of California Santa Barbara have developed catalytic molten metals to pyrolize methane to release hydrogen and to form solid carbon. The insoluble carbon floats to the surface of the melt, where it can be removed and stored or incorporated into composite materials. Metallic catalysts (e.g.,

article thumbnail

Surrey team developing direct-air-capture CO2 to methanol process

Green Car Congress

Researchers at the University of Surrey (UK) are developing a process to capture carbon dioxide directly from the air and then use dynamic catalysis to create methanol—a valuable chemical that, made this way, could be carbon-negative. —Dr Melis Duyar, project lead from the University of Surrey.

CO2 337