article thumbnail

Fukushima Hydrogen Energy Research Field (FH2R) completed in Japan; aiming for low-cost green hydrogen production; P2G

Green Car Congress

Renewable energy output is subject to large fluctuations, so FH2R will adjust to supply and demand in the power grid in order to maximize utilization of this energy while establishing low-cost, Green hydrogen production technology. With sights set on expanding the use of renewable energy, Toshiba ESS, Tohoku Electric Power Co.,

Low Cost 450
article thumbnail

Tokyo Tech team develops low-cost germanium-free solid electrolyte for Li-ion batteries

Green Car Congress

Researchers at Tokyo Institute of Technology have devised a low-cost, scalable approach to developing all-solid-state batteries, improving prospects for scaling up the technology for widespread use in electric vehicles, communications and other industrial applications. Cyclic voltammogram and charge-discharge curves. Click to enlarge.

Li-ion 277
article thumbnail

EPFL team develops low-cost catalyst for splitting CO2

Green Car Congress

EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.

Low Cost 150
article thumbnail

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

Green Car Congress

Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.

Low Cost 300
article thumbnail

Penn State, FSU team develops low-cost, efficient layered heterostructure catalyst for water-splitting

Green Car Congress

A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process. 7b02060.

Low Cost 170
article thumbnail

New low-cost, lightweight magnesium sheet alloy with good formability for automotive applications; 1.5x stronger than aluminum

Green Car Congress

The magnesium alloy becomes stronger than aluminum alloy after a heat treatment, uses only common metals, and could be a low-cost, lightweight sheet metal for automotive applications. The newly developed alloy is composed of only common metals, so the material cost is not expensive. and Development Program (ALCA). Resources.

Low Cost 150
article thumbnail

Georgia Tech team develops simple, low-cost process for oxide nanowires; superior separators for Li-ion batteries

Green Car Congress

The process could significantly lower the cost of producing the one-dimensional (1D) nanostructures, enabling a broad range of uses in lightweight structural composites, advanced sensors, electronic devices—and thermally-stable and strong battery membranes able to withstand temperatures of more than 1,000 ˚C. —Gleb Yushin.

Low Cost 150