This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
UniversalHydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using UniversalHydrogen’s modular capsules. Icelandair. Icelandair.
Deutsche Aircraft, the new purpose-driven German aircraft Original Equipment Manufacturer (OEM) ( earlier post ), and UniversalHydrogen Co. earlier post ) announced a technical collaboration to complete a design study to incorporate UniversalHydrogen’s modular capsule technology into the Dornier 328 program.
UniversalHydrogen has flown a 40-passenger regional airliner using hydrogen fuel cell propulsion. In this first test flight, one of the airplane’s turbine engines was replaced with UniversalHydrogen’s fuel cell-electric, megawatt-class powertrain. The other remained a conventional engine for safety of flight.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
UniversalHydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, UniversalHydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes.
UniversalHydrogen closed a $62-million new funding round; the oversubscribed round was completed less than six months after the company’s Series A ( earlier post ), bringing total raised to $85 million. Full-scale prototype of UniversalHydrogen's gaseous hydrogen module, with one capsule removed.
UniversalHydrogen was granted a special airworthiness certificate in the experimental category by the Federal Aviation Administration (FAA) to proceed with the first flight of its hydrogen-powered regional aircraft. —Paul Eremenko, co-founder and CEO of UniversalHydrogen Air New Zealand.
In February 2022, GTI Energy, S&P Global Commodity Insights and the National Energy Technology Laboratory (NETL) launched the Open Hydrogen Initiative (OHI), a collaboration to further transparency into the environmental impact of hydrogen production and help unlock its full potential as an important driver of energy transitions.
UniversalHydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Earlier post.).
The BMW Group will pilot the second generation of hydrogen fuel cell drives in a small series in the BMW i Hydrogen NEXT based on the current BMW X5 from 2022. The drive in the BMW i Hydrogen NEXT. The system performance of the BMW i Hydrogen NEXT comes to a total of 275 kW (374 hp) and ensures typical BMW driving dynamics.
Researchers from London South Bank University (LSBU), School of the Built Environment and Architecture, are investigating the use of metal hydrides to absorb, release and store hydrogen for fuel cell buses. Principle of a metal hydride tank for the reversible storage of hydrogen. From Adelhelm & Jongh (2011). EP/T022760/1.
The government of the state of Victoria in Australia is providing more than $1 million in funding to CSIRO, Australia’s national science agency, that will enable it to partner with Swinburne University of Technology to establish the Victorian Hydrogen Hub (VH2). Hydrogen Industry Mission. Missions are currently being developed.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
The Scottish Hydrogen Fuel Cell Freight Trial (SHyFT), led by Arcola Energy, has secured funding from the Department for Transport’s Zero Emission Road Freight program for the design of a trial of hydrogen fuel cell trucks, supported by a green hydrogen refueling infrastructure in Scotland.
Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. A complete ammonia conversion to hydrogen was achieved at an economically feasible 450 ?C
The EU project HyInHeat is researching the use of hydrogen in the aluminum and steel industry. The main objective of HyInHeat is the integration of hydrogen as fuel for high-temperature heating processes in the energy-intensive industries. The EU is contributing €17.7 million in funding to the €24-million project.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. Credit: Jing Liu. In 2015, Zhang et al.
Cranfield Aerospace Solutions (CAeS)—the UK SME leading the Project Fresson consortium—will exploit recent advances in hydrogen fuel cell technology to develop a commercially viable, retrofit powertrain solution for the nine-passenger Britten-Norman Islander aircraft.
In a first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels. When hydrogen moves into steel, it makes the metal become brittle, leading to catastrophic failures. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm).
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. —Zakhvatkin et al. 1c00367.
Rolls-Royce is launching a new leading-edge hydrogen program and also given a further update on its research into hybrid-electric power as it continues to pioneer new forms of aviation sustainability. Artist’s impression of a hydrogen engine ground test.
California legislators have allocated UC San Diego $35 million to design and build a new coastal research vessel with a first-of-its-kind hydrogen-hybrid propulsion system. The hybrid-hydrogen design of this new vessel represents an innovation in the maritime industry. Earlier post.)
A consortium comprising Engie Solutions, Siemens Gas and Power, Centrax, Arttic, German Aerospace Center (DLR) and four European universities is implementing the HYFLEXPOWER project funded by the European Commission under the Horizon 2020 Framework Program for Research and Innovation (Grant Agreement 884229).
Apart from the rapid development of battery technology, hydrogen is a good complementary option as an alternative fuel for long-distance transport. The hydrogen combustion engine, on the other hand, offers a more readily available and robust solution thanks to the well-known basic technology and could thus serve as a bridging technology.
A team at Beijing University of Technology has evaluated four load control strategies—throttle, ammonia-hydrogen ratio, air–fuel ratio, and variable valve timing—for an ammonia-hydrogen dual fuel Miller cycle spark ignition engine in a hybrid system. A paper on their work appears in the journal Fuel. 2023.128396
UniversalHydrogen Co. ACIA expects to place 10 firm orders for UniversalHydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Even if true though, the use of blue hydrogen appears difficult to justify on climate grounds. 2021) “How green is blue hydrogen?”
million) of government funding to develop a biogas and hydrogen dual-fuel solution for the Class 66 locomotive. This is the first time that this hydrogen dual-fuel technology, which is used in the road industry, will be applied to the rail freight sector on such a widely used class of locomotive. million (US$0.55
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University with collaborators at the University of Oregon and Manchester Metropolitan University have developed a seawater-resilient bipolar membrane electrolyzer.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
Several organizations, encompassing companies, research labs, and academia, have formed the Hydrogen Opposed Piston Engine Working Group. The Working Group consists of members undertaking research and development in the field of hydrogen combustion in an opposed-piston engine. If hydrogen combustion is sufficiently lean—i.e.,
An international team of researchers, led by Professor David Antonelli of Lancaster University, has discovered a new material made from manganese hydride that could be used to make molecular sieves within hydrogen fuel tanks. —Professor Antonelli, Chair in Physical Chemistry at Lancaster University. wt% and 197 kgH 2 m ?
Scientists from Kyushu University and Kumamoto University in Japan have developed a new catalyst capable of assisting three key reactions for using hydrogen in energy and industry. A hydrogen energy economy will require not only catalysts capable of H 2 oxidation but also those that can put it back together again.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. Prototype testing of Sparc Hydrogen’s reactor in real world conditions is the culmination of more than 5 years of research and development work conducted by the University of Adelaide and Flinders University.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 kWh/kg hydrogen (vs. 2 and 85 °C of only 1.51
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
A team from the University of Cordoba in Spain and the University of Tehran in Iran has been searching for ways to increase hydrogen production by using microorganisms, specifically microalgae and bacteria. When alga works on its own, it produces hydrogen via photosynthesis whereas bacteria make hydrogen via sugar fermentation.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). Credit IBS. —Associate Director Lee.
CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. along with associated hydrogen storage and bunkering arrangements. along with associated hydrogen storage and bunkering arrangements. Hydrogen storage and piping. Source: HYSEAS III. Lithium-ion batteries.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content