article thumbnail

JERA and Toyota deploy first large capacity Sweep Energy Storage System with second-life batteries

Green Car Congress

JERA, the largest power generation company in Japan, responsible for about 30% of Japan’s electricity, and Toyota Motor have built and deployed the first large-capacity “Sweep Energy Storage System”. The project plans to operate grid storage batteries for recharge and discharge operations, connected to the Chubu Electric Power Grid Co.,

article thumbnail

Tohoku team develops new electrolyte to support rechargeable calcium batteries

Green Car Congress

Scientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. High-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices.

Recharge 418
article thumbnail

Rechargeable ultrahigh-capacity tellurium-aluminum batteries

Green Car Congress

Researchers at the University of Science and Technology Beijing, with colleagues at Beijing Institute of Technology, have demonstrated the potential of rechargeable tellurium (Te) nanowire positive electrodes to construct ultrahigh-capacity rechargeable tellurium-aluminum batteries (TABs). A g -1 ) along with an initial 1.4

Recharge 261
article thumbnail

New solid-electrolyte interphase may boost prospects for rechargeable Li-metal batteries

Green Car Congress

Rechargeable lithium metal batteries with increased energy density, performance, and safety may be possible with a newly-developed, solid-electrolyte interphase (SEI), according to Penn State researchers. The Office of Vehicle Technologies in the US Department of Energy and the National Science Foundation supported this work.

Recharge 305
article thumbnail

New prototype rechargeable lithium-nitrogen battery

Green Car Congress

But nitrogen gas—which consists of two nitrogen atoms held together by a strong, triple covalent bond—doesn’t break apart under normal conditions, presenting a challenge to scientists who want to transfer the chemical energy of the bond into electricity. Structure and rechargeability of a room-temperature Li-N 2 battery. (A)

Recharge 225
article thumbnail

USC team develops novel organic redox flow battery for large-scale energy storage

Green Car Congress

Scientists at USC have developed a novel water-based Organic Redox Flow Battery (ORBAT) for lower cost, long lasting large-scale energy storage. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries, they found. Schematic of ORBAT. Click to enlarge. Electrochem.

article thumbnail

Cornell team develops aluminum-anode batteries with up to 10,000 cycles

Green Car Congress

Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. A paper on the work is published in Nature Energy. The group previously demonstrated the potential of zinc-anode batteries.

Batteries 454