article thumbnail

New stable Fe3O4/C composite material for conversion electrode in solid-state Li-ion batteries

Green Car Congress

Researchers in Europe, with colleagues from Samsung R&D Institute in Japan, have developed a highly stable Fe 3 O 4 /C composite for use as a conversion electrode in all-solid-state Li-ion batteries. In addition, recently a new chemistry has surfaced, allowing to store more Li + by the so-called conversion mechanism.

Li-ion 170
article thumbnail

Aqua Metals and 6K Energy partner to develop low-carbon CAM precursors for Li-ion batteries

Green Car Congress

The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.

Li-ion 199
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).

Li-ion 199
article thumbnail

Tin-based nanoplates as promising anode materials for high-capacity Li-ion batteries

Green Car Congress

S 0.5 ) nanoplates for use as Li-ion anodes. Silicon is one of the numerous alternative anode materials but, despite a high theoretical capacity, shows serious volume expansion (> 300%) and low electric conductivity which impedes its success in extensive application. Electrochemical performance of a Li-ion full cell. (a)

Li-ion 186
article thumbnail

Study shows paper-folding concepts can compact a Li-ion battery and increase its areal energy density

Green Car Congress

Researchers at Arizona State University have shown that paper-folding concepts can be applied to Li-ion batteries in order to realize a device with higher areal energy densities. These initial results showed that the Li-ion batteries can still exhibit good electrochemical performance even after multiple folds, they said.

Li-ion 331
article thumbnail

High-rate and long-life LNMO cathode materials for Li-ion batteries

Green Car Congress

O 4 (LNMO) porous nanorods with nanoparticles that function as high-rate and long-life cathode materials for rechargeable lithium-ion batteries. Nanomaterials chemistry has recently been the main impetus for electrochemical devices with advanced energy conversion and storage such as rechargeable lithium- ion batteries (LIBs).

Li-ion 186
article thumbnail

Vanderbilt researchers find iron pyrite quantum dots boost performance of sodium-ion and Li-ion batteries

Green Car Congress

nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. FeS 2 is particularly attractive for energy storage technology due to its earth abundance, low toxicity, and low raw material cost. …

Li-ion 150