Remove Commercial Remove Recharge Remove Sodium
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. Such a lithium sulfur battery could achieve specific energy levels up to 800 Wh/kg, compared to about 250 Wh/kg from the best commercial Li-ion cells today. Lithium sulfur.

Li-ion 218
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. systems suffer from cycling performance issues that impede their commercial applications: Li/O 2. Click to enlarge. V) without failure. S y systems.

Recharge 220
article thumbnail

Researchers propose new VO2 cathode material for aluminum-ion rechargeable battery

Green Car Congress

Sodium-ion and magnesium-ion batteries, as new energy storage systems in portable devices, have attracted much attention of the investigators. However, the concerns regarding the high cost and the limited lithium reserves in the earth’s crust have driven the researchers to search more sustainable alternative energy storage solutions.

Recharge 240
article thumbnail

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.

Sodium 150
article thumbnail

NYSERDA Commits $8M to Develop and Commercialize 19 New York Battery and Energy-Storage Technology Projects

Green Car Congress

The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energy storage projects. Funding will support projects in two categories: Industry-led near-term commercialization partnerships (two major awards), and technology development. General Electric.

article thumbnail

Sigma-Aldrich and Ilika Technologies collaborate to scale-up and commercialize boron hydride hydrogen-storage materials

Green Car Congress

Aldrich Materials Science , a strategic technology initiative of Sigma-Aldrich Corporation, has signed an agreement to collaborate on the scale-up and commercialization of next-generation boron hydride hydrogen-storage materials with Ilika plc , an advanced cleantech materials discovery company.

Hydrogen 199