Remove Commercial Remove Low Cost Remove Powered Remove Water
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels.

Low Cost 243
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

The extended operating time of Heliogen’s technology and Bloom Energy’s ability to utilize heat efficiently is designed to reduce the cost of green hydrogen production compared to competing solutions. Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to break up water molecules and produce hydrogen.

Low Cost 397
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,

Low Cost 315
article thumbnail

Researchers in Australia develop low-cost water-splitting catalyst that offers comparable performance to platinum

Green Car Congress

Iron and nickel, which are found in abundance on Earth, would replace precious metals ruthenium, platinum and iridium that up until now are regarded as benchmark catalysts in the water-splitting process. —Suryanto et al. —Suryanto et al. Suryanto et al.

Water 243
article thumbnail

Topsoe to build world’s largest SOEC electrolyzer production facility; 500 MW scalable to 5 GW; focusing on Power-to-X

Green Car Congress

The Topsoe SOEC electrolyzer is a compact stack built primarily from abundant, low-cost ceramic materials enclosed within a metal housing. To produce hydrogen, it utilizes electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). —Roeland Baan, CEO at Topsoe.

Power 418
article thumbnail

DOE awards $22.1M to 10 nuclear technology projects including clean hydrogen production

Green Car Congress

In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.

Hydrogen 475
article thumbnail

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

Green Car Congress

As the V OC of the presented c-Si cells is only ∼600 mV, four cells need to be connected in series to achieve stable water splitting performance. We demonstrate in this study that, thanks to their high V OC , three series-connected SHJ cells can already stably drive the water splitting reaction at unprecedented SHE. Schüttauf et al.

Solar 150