This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Oxidation of methane also introduces impurities in the product stream.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
The partners aim to replace coal-fired power plants with hydrogen-ready gas-fired power plants in Germany, and to build production of low carbon and renewable hydrogen in Norway that will be exported through pipeline to Germany. Building production facilities in Norway to produce low carbon hydrogen from natural gas with CCS.
World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CT—the conversion of coal to liquid fuels (CTL). By 2020, CTL is expected to account for 15% of the coal use in China. —Wang et al.
Syntec Biofuel’s technology is based on the catalytic conversion of syngas, generated from biomass, natural gas or coal, to produce not only ethanol but methanol and other high value alcohols such as propanol and butanol. Earlier post.). Syntec Biofuel CEO Michael Jackson. per gallon.
Natural gas will play a leading role in reducing greenhouse-gas emissions over the next several decades, largely by replacing older, inefficient coal plants with highly efficient combined-cycle gas generation, according to a major new interim report out from MIT. —MITEI Director Ernest J.
The Funding Opportunity Announcement ( DE-FOA-0000703 ) for the awards is soliciting applications for R&D in two specific Areas of Interest: laboratory scale liquids production and assessment; and a feasibility study for a coal-biomass to liquids facility. Feasibility Study for a Coal-Biomass to Liquids Facility.
Clariant and Siemens Fuel Gasification Technology will cooperate in the commercialization of a new, jointly developed sour gas shift (SGS) (sulfur removal) technology for coal gasification. The entrained-flow Siemens Fuel Gasifier (SFG) is able to produce syngas from a wide range of fuels, even for low ranks of coal.
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. The carbon nanotubes are valued at more than $100,000 per tonne—a thousand-fold greater than coal. —Prof. 2019.07.007.
In a new report, energy, mining and minerals consultancy Wood Mackenzie projects that despite efforts to limit coal consumption and seek alternative fuel options, China’s strong appetite for thermal coal will lead to a doubling of demand by 2030. It is very unlikely that demand for thermal coal in China will peak before 2030.
The US Department of Energy (DOE) has issued a funding opportunity announcement ( DE-FOA-0000784 ) for up to $13 million to support the development of advanced coal gasification systems. AOI 1: Coal Feed Technologies - Low-rank Coal Feed or Coal-woody Biomass Feed Technologies. poplar, pine and hardwoods]).
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost CoalConversion to High-Hydrogen Syngas.
A new assessment of the viability of coal-to-liquids (CTL) technology by researchers from the MIT Joint Program on the Science and Policy of Global Change (JPSPGC) found that without climate policy, CTL has the potential to account for around a third of global liquid fuels by 2050. Credit: Chen et al., 2011 Click to enlarge.
The contract award marks China as the site for the first worldwide commercial implementation of the TRIG technology with the goal of producing low-emission, coal-based electricity. TRIG coal gasification technology was co-developed developed by Southern Company, KBR Inc., (Dongguan TMEP) in Guandong Province, Peoples Republic of China.
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. If biogas is substituted for conventional natural gas, total GHG emissions can further significantly reduced (190 gCO 2 /mile). Lifecycle GHG comparison.
Panda Power Funds has entered into a joint venture with Sunbury Generation LP to develop, finance, construct and operate a 1,000 megawatt natural gas-fueled, combined-cycle power project near Shamokin Dam in Snyder County, Pennsylvania. Construction will take approximately 30 months and will commence upon financing and other conditions.
an emerging natural gas production company which uses proprietary technology to convert both underground and mined low-rank coal to pipeline-quality methane biochemically at large scale and low cost, has raised equity in its second round of financing, led by new investor Khosla Ventures. Ciris Energy, Inc.,
MIT and the IEA both have newly released reports exploring the potential for and impact of a major expansion in global usage of natural gas, given the current re-evaluation of global supplies. The IEA takes a more conventional approach, assessing the impact on the penetration of vehicles burning gas as their fuel. Earlier post.)
Panda Power Funds has financed the 1,124 megawatt Panda “Hummel Station” power plant—one of the largest coal-to-natural gas power conversion projects in the United States. The plant will be located at the site of the retired Sunbury coal-fired power plant near Shamokin Dam in Snyder County, Pennsylvania.
However, they also noted, high PTW efficiencies and the moderate fuel economies of current compressed natural gas vehicles (CNGVs) make them a viable option as well. The study investigated the the WTW energy and emissions from the use of natural gas in CNGVs with a range of CNGV fuel economy and natural gas compressor efficiency.
The US Department of Energy (DOE) has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects are intended to improve coalconversion and use and will help propel technologies for future advanced coal power systems. DOE Share: $299,998).
The US Department of Energy (DOE) has selected nine universities for awards for research projects that will continue to support innovation and development of advanced, lower emission coal technologies. The projects selected for awards include: Improved Alloys. DOE Share: $293,519). Brown University. Improved Structural Materials.
Researchers from the Department of Energy’s Pacific Northwest National Laboratory (PNNL), the National Energy Technology Laboratory (NETL) and the Chinese Academy of Sciences (CAS) have formed the Clean Energy Partnership to accelerate the development and deployment of coalconversion, emissions capture and carbon storage technologies.
an energy and petrochemical producer, have signed a memorandum of understanding with the South Korean government to develop coalconversion technologies, including synthetic natural gas (SNG) produced through a coal-to-gasconversion process utilizing low-quality coal. billion won (US$6.3
Technology warming potential (TWP) for three sets of natural gas fuel-switching scenarios. (A) A) CNG light-duty cars vs. gasoline cars; (B) CNG heavy-duty vehicles vs. diesel vehicles; and (C) combined-cycle natural gas plants vs. supercritical coal plants using low-CH 4 coal. Source: Alvarez et al. Click to enlarge.
The Clean Coal Task Force (CCTF) was created in 2007 by the Wyoming State Legislature to help secure Wyoming’s financial future by preserving the value of coal, an important export from the state. The newly approved projects will receive $8,769,713, the largest single annual funding in the history of the fund.
China’s shift toward alternative fuels in order to cut its reliance on imported oil is creating large opportunities, notably in natural gas vehicles (NGVs) and in the conversion of coal to ethanol, according to a new report from Lux Research. Among their findings: Government programs tap natural gas. Renewable resources.
Researchers from Northwestern University and Princeton University have explored the impact on US air quality from an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). coal, oil, natural gas, and biomass). Winter O 3 increases due to reduced loss via traffic NO x. Winter while PM 2.5
has selected Honeywell’s UOP technology to convert methanol into building blocks for chemical products at an existing coal chemical complex in China. It is projected to produce 295,000 metric tons per year of ethylene and propylene for conversion to chemical products. China’s Wison (Nanjing) Clean Energy Company Ltd.
have executed a terms sheet for a proposed 50:50 joint venture for the conversion of underground coal gasification (UCG) syngas to methane. The partners have the option to include further coal deposit interests of either party in this project at a later time. Australia Petroleum Ltd. is headed by Brahim F. is headed by Brahim F.
The US Department of Energy has selected 7 projects to participate in the University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coalconversion and utilization, by-product utilization, and technological development for advanced energy systems.
The US Department of Energy (DOE) has selected 8 research projects for funding that will focus on gasification of coal/biomass to produce synthetic gas (syngas) as a pathway to producing power, hydrogen, fuel or chemicals. will blend coal and biomass to develop a feedstock for co-gasification. Clean Coal Briquette Inc.
Underground coal gasification uses paired wells in a coal seam: one an oxidant injection well, the other the syngas producer well. CIRI), an Alaska Native corporation, is proposing an underground coal gasification (UCG) project that would use the resulting syngas to fuel a new 100 MW combined cycle power plant. Source: CIRI.
The US Department of Energy (DOE) in partnership with the US Air Force has issued a request for information (RFI)— DE-FOA-0000981 —on research & development aimed at greenhouse gas emissions reductions and cost competitiveness of Mil-Spec jet fuel production using coal-to-liquid (CTL) fuel technologies. Information Request.
The University of Wyoming (UW) has received a $2 million grant from coal giant Peabody Energy to create the Peabody Energy Clean Coal Technology Laboratory in the UW Energy Resources Center in Laramie. Peabody Energy is the world’s largest private-sector coal company.
The National Energy Technology Laboratory (NETL) has released a follow-on study to its 2009 evaluation of the economic and environmental performance of Coal-to-Liquids (CTL) and CTL with modest amounts of biomass mixed in (15% by weight) for the production of zero-sulfure diesel fuel. Earlier post.). —White and Gray.
(SES), a global energy and gasification technology company that provides products and solutions to the energy and chemicals industries, has entered into a Technical Study Agreement with Ambre Energy of Australia to supply a proprietary gasification design to support Ambre’s development of a planned Coal to Liquids Project (ambreCTL).
The US DOE is soliciting ( DE-FOA-0001051 ) projects for up to $10 million in awards to target technological advancements to lower the cost of producing hydrogen and/or high-hydrogen syngas from coal for use in 90% carbon capture power generation and/or gasification-based liquid (transportation) fuel production: methanol or diesel.
The projects conducted through this program are geared toward reducing the cost of coalconversion and mitigating the environmental impacts of fossil-fueled power generation. Bio-gasification of Coal to Methane. Lead organization. Description. Montana State University. The Ohio State University.
In August, a groundbreaking ceremony was held in Ovadan-Depe near the capital of Ashgabad in Turkmenistan to launch the construction of a major plant focused on the conversion of natural gas into synthetic gasoline. DCK-10 ensures high oxygenate conversion rates. —Bjerne S. Topsoe Gasoline Synthesis Catalyst GSK-10.
CO 2 -rich flue gas from a lignite-fired power station will feed the designer micro-organisms. An experimental plant is to be located at RWE Power’s Coal Innovation Centre, at its Niederaussem power plant site. Working with RWE Power, we want to advance into a new era of CO 2 conversion. Dr Jürgen Eck, BRAIN’s Research Director.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. The process takes flue gas from power plants, uses a PNNL-patented solvent to strip out CO 2 , then converts the CO 2 into methanol. The catalysts commonly used for gas-phase CO 2 hydrogenation (e.g.,
Clariant, a global provider of specialty chemicals, has supplied a proprietary CO 2 -SNG (synthetic natural gas) catalyst for the methanation unit of Audi’s new power-to-gas facility in Werlte, Germany. The “e-gas plant” was started up in June this year and is part of Audi’s sustainability initiative. Earlier post.).
A Technical Feasibility Study (TFS) for a coal-to-methanol (CTM) plant based on the Arckaringa coal resources in Australia has concluded that CTM could be a viable project capable of augmenting the Bankable Feasibility Study (BFS) for Altona Energy’s Arckaringa Clean Energy CTL (coal-to-liquids) and Power Project in South Australia.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content