This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. Credit: ESRI, Swansea University.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis. Source: Prof.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes. Universal Hydrogen modular capsule.
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. Operation of this technology under dynamic conditions will be confirmed during a year-long test. FlexMethanol.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
A team of Brown University researchers has fine-tuned a copper catalyst to produce complex hydrocarbons—C 2+ products—from CO 2 with high efficiency. By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. An open-access paper on the work is published in Nature Communications.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. The conversion work for US-based airlines, flight test, as well as continuing airworthiness support would be based in AeroTEC’s Moses Lake facility.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Conversion into liquid fuels would be advantageous because they have high energy density and are safe to store and transport. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
One way to mitigate high feedstock cost is to maximize conversion into the bioproduct of interest. This maximization, though, is limited because of the production of CO 2 during the conversion of sugar into acetyl-CoA in traditional fermentation processes. We get both the increase in yield and consumption of all the carbon.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. Carbon nanotubes grown by C2CNT directly from carbon dioxide (SEM and TEM imaging). Left and center. Earlier post.).
The ceramic membrane reactor also separates carbon dioxide more efficiently, enabling the greenhouse gas to be easily transported and sequestered. The process also has a low carbon footprint. The team has also demonstrated that the process can be scaled up for commercial application.
Now, a team from the University at Buffalo, Southern Illinois University, University of South Carolina and Brookhaven National Laboratory reports a highly active and stable Ru-free catalyst from earth-abundant elements for efficient carbon-free hydrogen generation via ammonia decomposition. Tabassum et al. Kyriakidou, Q.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Arizona State University. High-Temperature Topping Cells from LED Materials Arizona State University will develop a solar cell that can operate efficiently at temperatures above 450°C, unlike today’s solar cells, which lose efficiency rapidly above 100°C. Arizona State University. Earlier post.). Click to enlarge. Description.
The assistant professor and William Marsh Rice Trustee Chair of Chemical and Biomolecular Engineering has proposed the development of a modular electrochemical system that will provide “a sustainable, negative-carbon, low-waste and point-source manufacturing path preferable to traditional large-scale chemical process plants.”.
The new catalyst contains cobalt interspersed with nitrogen and carbon. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. —Yuyan Shao.
Twenty-three of the projects receiving funding are headed by universities, eight are led by the Energy Department’s National Laboratories and one project is run by a non-profit organization. Light-Material Interactions in Energy Conversion (LMI). University of California, Berkeley. University of California, Riverside.
Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. —senior author Matthew Kanan, an associate professor of chemistry at Stanford University. Ripatti et al.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. However, until now the details of how this happened were unclear.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
A study by a team at University of Illinois at Urbana−Champaign has found that, with currently achievable performance levels, synthetic fuels produced via the electrochemical reduction of CO 2 and the Fischer-Tropsch (FT) process system are not economically and environmentally competitive with using petroleum-based fuel. 6b00665.
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
(SoCalGas) is partnering with a development team to advance a new process that converts natural gas to hydrogen, carbon fiber, and carbon nanotubes. The technology commercialization team includes SoCalGas, C4, Pacific Northwest National Laboratory (PNNL) and West Virginia University (WVU).
A team from Nanjing University, Hubei Normal University and Zhejiang University has developed a cobalt-doped graphdiyne catalyst for catalytically decomposing ammonia (NH 3 ) to generate H 2. Graphdiyne (GDY) is a new two-dimensional (2D) carbon allotrope, similar to graphene.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. The research led by Rice chemist James Tour and Rouzbeh Shahsavari of C-Crete is detailed in the journal Carbon. —James Tour.
Recent research in electrocatalytic CO 2 conversion points the way to using CO 2 as a feedstock and renewable electricity as an energy supply for the synthesis of different types of fuel and value-added chemicals such as ethylene, ethanol, and propane. Their paper is published in Proceedings of the National Academy of Sciences (PNAS).
Rice University researchers have won a $3.3-million million Advanced Research Projects Agency - Energy (ARPA-E) OPEEN+ grant to develop a method to convert natural gas into carbon nanotubes for materials that can replace metals in large-scale applications. The process would also produce valuable hydrogen as a side product.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers in China led by a team from Fudan University have demonstrated the electrochemical reduction of CO 2 toward C 2+ alcohols with a faradaic efficiency of ~70% using copper (Cu) catalysts with stepped sites.
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years. Turning carbon dioxide into methane is a very difficult process.
Researchers from Peking University and SINOPEC have developed a one-post method for the synthesis of C 6+ branched compounds from isopropanol condenstation on Ni/MoC catalysts. h -1 over 1.2Ni/MoC with a 100% selectivity of branched carbon chain. An open-access paper on their work appears in the RSC journal Green Chemistry.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content