article thumbnail

New photocatalytic system converts carbon dioxide to valuable fuel more efficiently than natural photosynthesis

Green Car Congress

The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.

Convert 369
article thumbnail

New porous coordination polymer captures CO2, converts it to useful organic materials

Green Car Congress

A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China. —Wu et al. —Susumu Kitagawa, materials chemist at Kyoto University.

Polymer 255
article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.

Carbon 376
article thumbnail

ExxonMobil, UC Berkeley, Berkeley Lab develop new MOF for carbon capture and steam regeneration

Green Car Congress

Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).

Carbon 414
article thumbnail

Osaka researchers find formate dehydrogenase reduces CO2 directly to formic acid

Green Car Congress

student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. The development of an effective catalyst is an important step in creating an artificial photosynthesis system that uses sunlight to convert carbon dioxide into organic molecules.

CO2 435
article thumbnail

Oxford team directly converts CO2 to jet fuel using iron-based catalysts

Green Car Congress

The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2% Makgae, O.A.

Convert 505
article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

The research team encapsulated a supported Ru/TiO 2 catalyst within the polymer layers of an imine-based porous organic polymer that controls its selectivity. To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal. Image credit: Chih-Jung Chen).