Remove Light Remove Solar Remove Universal
article thumbnail

University of Houston team demonstrates new efficient solar water-splitting catalyst for hydrogen production

Green Car Congress

Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. Different sources of light were used, ranging from a laser to white light simulating the solar spectrum.

Houston 268
article thumbnail

Researchers propose testing standards for particulate photocatalysts in solar fuel production

Green Car Congress

Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.

Solar 418
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Researchers use quantum computing method to optimize molecular photoswitches for solar energy harvesting

Green Car Congress

Molecular photoswitches that can both convert and store energy could be used to make solar energy harvesting more efficient. The procedure was based on a dataset of more than 400,000 molecules, which the researchers screened to find the optimum molecular structure for solar energy storage materials.

Solar 418
article thumbnail

Researchers produce green syngas using CO2, water and sunlight

Green Car Congress

Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. under concentrated solar light illumination.

Water 504
article thumbnail

Monash study on solar-driven electrolysis for green hydrogen production cautions on life-cycle emissions and EROI

Green Car Congress

Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. In light of the sheer scale of the hydrogen challenge, several questions demand close consideration. Palmer et al.

Solar 459
article thumbnail

WUSTL researchers demonstrate solar-panel-powered microbial electrosynthesis to produce n-butanol from light, CO2 and power

Green Car Congress

Researchers at Washington University in St. A team of biologists and engineers modified Rhodopseudomonas palustris TIE-1 (TIE-1) so that it can produce a biofuel using only three renewable and naturally abundant source ingredients: carbon dioxide, solar panel-generated electricity and light. —Wei Bai. Ranaivoarisoa, T.O.,

Solar 319
article thumbnail

ARPA-E awarding $30M to 12 hybrid solar projects; conversion and storage

Green Car Congress

Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at low cost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources. Arizona State University.

Solar 300